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Certifiers of quality often report only coarse grades to the public de-

spite having measured quality more finely, e.g., “Pass” or “Certified”

instead of “73 out of 100”. Why? We show that coarse grades result

in more information being provided to the public because the coarse-

ness encourages those of middling quality to apply for certification.

Dropping exact grading in favor of the best coarse grading scheme

reduces public uncertainty because the extra participation outweighs

the coarser reporting. In some circumstances, the coarsest meaningful

grading scheme, pass-fail grading, results in the most information.

JEL: D82, L15.

Grades are often coarse. Rather than an exact number or rank, a grade is usually only a

rough indication of quality, such as a letter grade or even just a binary pass-fail grade. Safety

organizations usually certify that a product is safe with a seal of approval that does not indicate

whether the product passed tests just barely or by a wide margin. Environmental organizations

typically certify environmental quality with a simple “eco-label” rather than revealing the results

of their more detailed evaluation. When it comes to reporting the results to the public, they throw

away information.

Why this waste of information? An obvious reason is that it costs more to grade finely than

coarsely. But this can’t be the entire explanation, since the certifier often collects detailed in-
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formation but refrains from reporting it.1 When the certifier deliberately reclassifies information

with a coarsening filter before reporting the results publicly, coarse grading is more expensive

than exact grading, not cheaper.

This coarsening of information is a puzzle since a certifier has an incentive to provide accurate

information so as to increase the value of its services to consumers and advertisers. Making

coarsening even more of a puzzle, many certifiers are non-profits with the explicit goal of pro-

viding consumers with the best information. For instance, non-profits run most of the numerous

eco-label schemes that provide information on products’ environmental, health, and social im-

pacts. Of 363 different schemes tracked byEcolabelindex.com, 209 are controlled by non-profits,

59 by industry groups, 53 by governments, and 42 by for-profits.2

If a certifier really wants to provide accurate information to receivers, why make the informa-

tion coarser than necessary? As discussed in the literature survey in Section V, there are several

possible reasons – that the certifier aims to help the firms, not consumers; that the certifier can

increase its own profits by coarseness; that coarseness can provide incentives for firms to im-

prove their quality; that coarseness makes it easier for receivers to process the information. We

will add another reason, one that applies even when the certifier’s aim is to convey as much in-

formation as possible but which applies only when certification is voluntary. In situations such

as certification for eco-labels, costly cooperation from firms is required; the certifier needs to get

firms to participate. Just as a student would be reluctant to attend a medical school that would

publicly certify him as the worst in his class, a firm would not be eager to be stamped with a

seal of approval that tells the world it barely passed. (Recall the old joke, “What do you call

someone who graduated from the bottom of his class in medical school? Doctor.”) Hence, a

certifier who wants to maximize information needs to consider how the grading scheme affects

the willingness of senders to be certified at all.

Coarsening can increase the amount of information receivers get in equilibrium by inducing

more participation. If the certification grade is coarse, a mediocre type is pooled with better

1For instance the EnergyStar label requires that a third-party measure energy usage and certify that it is below a threshold, but
the label does not indicate the actual energy usage. Similarly, 95% of a product’s ingredients must be organic for a product to use
the label “organic”, but the label does not usually indicate the exact percentage.

2We thank Anastasia O’Rourke for providing this information, which is for 2009.
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FIGURE 1. PASS-FAIL GRADE FOR A VOLUNTARY LABEL, EXACT GRADE FOR A MANDATORY LABEL.

types, so the expected quality conditional on the certification grade is higher than the true quality.

Therefore the sender has more incentive to bear the costs of certification, and participation rises.

We will show that at the margin the extra information from increased participation outweighs

the loss from throwing away information on those that do participate. Hence, coarse grading is

optimal in the sense of minimizing the mean squared error of the receiver’s estimate of sender

quality. Moreover, under some conditions the optimal scheme that minimizes mean squared

error is maximally coarse: the firm or person being tested simply passes or fails and the exact

test scores are never shown to the public.

We show that the optimal scheme is either pass-fail or what we call an “honors” scheme, in

which senders who are good enough to pass remain pooled, while senders at the top are reported

exactly. Schools do not publicly provide class rank information about most of their graduates,

but they do publicly honor the valedictorian and other top students. Safety and environmental

organizations provide product labels that certify a passing grade, and sometimes also provide

public awards that highlight the best achievers. Recommendation letters work the same way:

some students or employees won’t even ask for a letter, some receive favorable boilerplate letters,

and the best receive individuated letters with fine distinctions in commendation.

Since coarseness is used to encourage participation, the model predicts that coarseness is less

likely when quality evaluation does not require the sender’s cooperation. Camera companies can-

not prevent consumer reviewers at Amazon.com or professional reviewers at CNET from rating
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their products. Without the need to encourage participation by firms, we should expect product

review websites to provide fine information. Indeed, most such websites provide summary mea-

sures containing exact numeric scores, fine categorizations, or some combination thereof, and

offer immediate access to detailed review information.3

We also expect that coarseness is less likely for mandatory labels provided by government

agencies. Since they can force firms to provide information about their products, there is no

need to encourage participation by clouding the truth. Using the data from Ecolabelindex.com,

we found that of the 174 voluntary labels from OECD countries for which grading data could be

found, only 5 of them provide exact grades or grades with more than a few levels. In contrast,

all 5 mandatory labels provide fine or exact grades. As shown in Figure 1, the US Department of

Energy’s voluntary “Energy Star” label for home products only indicates that the product has met

a certain standard for low energy usage, while the FTC’s “EnergyGuide” label that is mandatory

for large appliances provides exact information on energy usage and expected energy cost.

Our results help fill a gap in the literature. The certification literature following Lizzeri (1999)

shows how a certifier trying to maximize his own profits from charging for certification can

do so by reporting product information coarsely. The Bayesian persuasion literature following

Kamenica & Gentzkow (2011) shows how a sender (not a certifier or receiver) can benefit from

pooling types in order to “concavify” the sender’s value function over receiver beliefs. In the last

section of this article we will say more about these and other papers. Of the three different parties

involved in certification — certifier, sender, and receiver — the existing literature assumes that

the certifier acts to maximize either his own benefit or the benefit to senders, while we assume

that the certifier acts to maximize the receiver’s information. We find, paradoxically, that the

purpose of coarsening can be to increase receiver information.

3Amazon, Yelp, and TripAdvisor report overall quality using star or half-star intervals, and also report exact numeric rankings.
CNET provides numeric ratings. The consumer reviews that the ratings and rankings are based on are all linked to. In contrast,
certifiers such as Underwriters Laboratory that provide pass/fail labels to participating firms typically treat the exact test results as
confidential.
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I. The Model

A sender (e.g., a firm selling a product) has exogenous quality q that is randomly distributed

with support on [0 1] according to distribution function F with analytic density f such that

f  0 on 0 1. The realization of q is the sender’s private information.

A certifier (e.g., an NGO) chooses a grading scheme mq which is a function that maps

quality q to a message m in a set M . We restrict the message function to rule out schemes with

isolated points that are informationally equivalent to the schemes we are interested in. First, any

set of types sending the same message, q  0 1 : mq  m for any m, must be a union
of positive measure intervals. Second, the set of types that each send a unique message, q 
0 1 : mq  mq  for all q   q, must also be a union of positive measure intervals.4 There
are no transfers. If the sender applies for certification, the certifier measures quality perfectly

and reports message m based on the grading scheme. If the sender chooses not to apply for

certification, the certifier reports the message m  “uncertified”.

The certifier chooses a grading scheme to best inform the receiver (e.g., a consumer) about

the sender’s quality in the sense of minimizing the expectation of a quadratic loss function

q  E[qm]2, i.e., mean squared error. This loss function could capture a preference for

providing accurate information, a reputational incentive to do so, or a concern for consumer

welfare.5

The sender incurs a fixed cost c  0 in time and trouble to be certified that is independent

of the sender’s type.6 The receiver updates his estimate of quality E[qm] based on the prior

distribution F and the equilibrium meaning of m. Given a certification scheme, the sender

chooses either payoff E[qm] c from applying for certification or E[q“uncertified”] from not

applying.7

4As suggested by a referee, these restrictions allow standard differentiation techniques and exclude, for example, schemes that
assign a single message to a fat Cantor set which has positive measure but is not a union of positive measure intervals. Note that the
assumption that m is a function rules out mixed-strategy grading.

5Quadratic loss functions, or equivalent assumptions, are widely used in cheap talk (e.g., Crawford & Sobel, 1982), signaling
(e.g., Spence, 1973), disclosure (e.g., Milgrom, 1981), certification (e.g., Lizzeri, 1999), and Bayesian persuasion games (e.g.,
Kamenica and Gentzkow, 2011).

6Note that c  0 prevents “unraveling” in which all senders participate. A referee suggested that, if transfers were allowed, the
certifier might reimburse senders depending on their quality while maintaining a balanced budget.

7For simplicity we assume that there is only one certifier to apply to. Since the goal of a certifier is to maximize information
to consumers, it will not engage in competition that worsens information, e.g., by providing exact grading to firms with very high
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FIGURE 2. TRUE QUALITY AND CONSUMER ESTIMATED QUALITY UNDER DIFFERENT GRADING SCHEMES

Our equilibrium concept is Perfect Bayesian Equilibrium, so given any grading scheme, re-

ceiver beliefs must be consistent with sender choices and follow Bayes Rule, and sender choices

must be best responses to receiver beliefs. If for a given grading scheme and cost c, there ex-

ists an equilibrium in which any positive measure of sender types applies for certification, we

call that scheme feasible. We ignore pessimistic non-certification equilibria in which the sender

never certifies because the receiver does not expect certification and off the equilibrium path

views it as a sign of poor quality.

Three schemes will be of particular interest: exact, pass-fail, and honors. In Figure 2(a)’s

exact grading scheme the product’s quality is exactly revealed, with message m  q. Under

exact grading, there will exist a quality level x such that all types q  x have sufficient incentive

to be certified, as we will explain below, but types below q  x will not be certified. Since

types q  x are exactly revealed, the expected loss under exact grading consists of the loss from

misestimating the quality of the uncertified senders in the quality interval [0 x:

(1) ELexact 
 x

0
q  E[qq  x]2 f qdq 

 1

x
0 f qdq

If a scheme is not exact then it is coarse: the exact quality of at least some types is not revealed.

We will later show that one of two coarse grading schemes, pass-fail or honors, will turn out to be

optimal depending on the circumstances. Figure 2(b)’s pass-fail grading is the coarsest possible

quality to draw them away from (and destabilize) a pass-fail certifier.
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meaningful grading scheme. The message is m  “uncertified” if q  p and m  “pass” if

q  p.8 Assuming that p is set so all types q  p have sufficient incentive to be certified, the

expected loss from pass-fail grading is

(2) EL pass f ail 
 p

0
q  E[qq  p]2 f qdq 

 1

p
q  E[qq  p]2 f qdq

The other optimal coarse grading scheme is Figure 2(c)’s honors grading, which sets a thresh-

old h above which quality is revealed exactly but also divides types below h into two groups by

a passing threshold p. If q  p then m  “uncertified”, if p  q  h then m  “pass”, and

if q  h then m  q. Assuming that p and h are set so that all types q  p have sufficient

incentive to be certified, the expected loss from honors grading is

(3)

E Lhonors 
 p

0
q  E[qq  p]2 f qdq

 h

p
q  E[qp  q  h]2 f qdq

 1

h
0 f qdq

For a scheme to be called “honors” we require strict inequalities: p  h to distinguish it from

exact grading, and h  1 to distinguish it from pass-fail grading. In all three grading schemes,

the certifier reports “uncertified” for a sender who fails to meet the certification standard, so such

senders are pooled with senders who do not apply. This assumption is unimportant to the results,

since in equilibrium a low-quality sender knows in advance that he would fail, and so does not

incur the cost c to be certified.

II. Why Coarseness Helps

In this section we will use examples based on specific quality densities f to make three points.

Figure 3(a)’s uniform density will show how coarse grading can improve on exact grading by

increasing participation. Figure 3(b)’s falling triangle density will show how pass-fail grading

can surpass not only exact grading but honors grading too. Figure 3(c)’s rising triangle density

will show that coarse grading can be feasible when exact grading is not. These “can happen”

8Alternatively, the certifier could send the message “fail” if q  p, but in equilibrium low-quality firms will not apply so a “fail”
grade is off the equilibrium path. Farhi, Lerner & Tirole (2013) show that revealing whether a firm tried to be certified but failed
can be important when firms are uncertain of their own type, but that is not the case in our model.
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FIGURE 3. GRADING SCHEMES FOR DIFFERENT DISTRIBUTIONS OF PRODUCT QUALITY

examples will build the intuition behind Section III’s general propositions.

A. Coarse Grading Can Increase Information by Increasing Participation

Suppose that the quality density f is uniform, as in Figure 3(a), and consider Figure 2(a)’s

exact grading scheme. The sender’s payoff q  c from certification is increasing in q, so some

type q  x has the least incentive to be certified. Since the payoff from not being certified is

E[qq  x]  x2, type q  x is just indifferent between being certified and not if x  c 
x2, so x  2c. Thus, for a quadratic loss function, the expected loss (mean squared error) is

E Lexact 
 2c
0 q  c2 dq  2

3c3 for the feasible range c  12. As shown by Figure 4(a)’s

“Exact” line, exact grading is perfectly informative as c approaches 0, since x also approaches

0. It is completely uninformative as c approaches 12, since x approaches 1.

Now consider pass-fail grading. For the uniform density, E[qq  p 1]]E[qq  [0 p]] 
1  p2  p2  12, so any value of the cutoff p is feasible as long as c  12 The

most informative cutoff is p  12, which from equation (2) has expected loss E L pass f ail  12
0 q  142 dq   112 q  342 dq  1

48 in the feasible range. As seen from Figure 4(a)’s

“P-F” line, pass-fail grading provides more information to receivers than exact grading when c

is large enough that few types will be certified under exact grading. Although pass-fail grading

provides only noisy information, more middling types are willing to be certified since they can
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pool with high types, and the extra information on these types more than compensates for the

extra noise.

Pass-fail grading does better than exact grading for high c, but honors grading does even better.

Honors grading cuts region [0 x in two using the passing standard p. Suppose we set h  2c

instead of x  2c, and set p  c, so the lower region is divided evenly. Types in the exact region

q  h now have more incentive to be certified, rather than look like a bad type who can’t even

pass. Types in the new pass region gain E[qq  p h]E[qq  [0 p]]  ph2 p2 
h2 from passing so at h  2c this gain just covers the certification cost. Therefore all types

q  p  c will participate and E Lhonors 
 c
0 q  c22 dq   2c

c q  3c22 dq  1
6c3 as

shown by Figure 4(a)’s “Honors” line. By allowing for more participation and continuing to

provide exact information on high types, honors grading outperforms both exact and pass-fail

grading.

Proposition 1 will show that this result that coarse grading is better than exact grading holds

generally. Proposition 2 will show that, of all possible coarse grading schemes, either pass/fail

or honors grading is the most informative.

B. Pass-Fail Grading Can Be Most Informative

Honors grading is more complex than pass-fail, but not always better. Consider Figure 3(b)’s

falling triangle density f  2 2q, which has the property that the gain from passing, E[qq 
p h]  E[qq  [0 p]]  2

3


h

2p


, increases in p. When c is low, honors grading is best

for this density. In this case, p can be set to divide the region [0 1] to minimize expected loss

without the participation constraint being binding, so some additional types can be revealed

exactly. From minimization of (2), the best division is at p  3
2  1

2


5  0382, which is

feasible for c  1
3


5  1

3  0412, so within the range c  [0 412] there is slack in the pass-

fail participation constraint for those types that apply. Therefore types near q  1 can be exactly

revealed and p  382 is still optimal and feasible, so honors grading does best. This is seen in
Figure 4(b), where for low c, honors grading reduces expected loss relative to pass-fail grading.

As c rises, the participation constraint becomes binding and pass-fail becomes best. The gain

from passing is increasing in the cutoff p, so p will have to be set higher to ensure participation.
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FIGURE 4. EXPECTED LOSS (MSE) VS. APPLICATION COST FOR DIFFERENT SCHEMES AND DIFFERENT DISTRIBUTIONS

If there is honors grading, so that h falls from h  1 to h  1, the gain from just passing falls,

so p will have to be set even higher to ensure participation, to some value p  p. Honors

grading is no longer “for free” as with the uniform density; it comes at a tradeoff. It provides

more information on types q  [h 1], who are exactly revealed, and on types q  p h, who
are in a smaller pooling group, but less information on uncertified types q  [0 p], who form

a larger pooling group. If c is such that the uncertified group is already sufficiently large, the

information loss from additional noise about the group dominates and the expected loss rises.

Figure 4(b) shows this. For c ' 412, honors grading is worse than pass-fail because any h  1

is worse than h  1, which is pass-fail grading.

This result that pass-fail grading can be most informative will be generalized and extended in

Proposition 3.

C. Coarse Grading Can Be Feasible When Exact Grading Is Not

So far we have concentrated on how coarse grades can increase participation by more types

and thereby increase informativeness. We now focus on feasibility. When can a scheme induce

any participation at all? For the uniform density the three schemes induce different amounts of

participation, but all of them can induce at least some participation for c  12, as in Figure

4(a). Similarly, for the falling triangle density each scheme is feasible if c  23, as in Figure

4(b).
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However, the maximum certification cost is not always the same for all three schemes. As

an example of how coarse grading can be feasible when exact grading is not, consider Figure

3(c)’s rising triangle density, f q  2q. Under exact grading, the gap x  E[qq  x] 
x  2x3  x3 reaches a maximum of 13 at x  1, so exact grading is feasible for c  13.

Under pass-fail grading, the gap E[qq  p]  E[qq  p]  2
3


1

1p


is decreasing in p and

converges to a maximum of 23 as p approaches 0. Therefore, pass-fail grading is feasible for

c  23. Since honors grading can use an h arbitrarily close to 1, honors grading is also feasible

for c  23, as shown in Figure 4(c). For example, the honors scheme (p  0 h  34) shown

in Figure 3(c) is feasible when c  12, and indeed is more informative than pass-fail grading.

This result on the greater feasibility of coarse grading will be generalized and extended in

Proposition 4.

III. Propositions for General Distributions of Quality

The above analysis compared the informativeness and feasibility of the exact, pass-fail, and

honors grading schemes for particular distributions. We now extend our analysis to more general

f and to other possible grading schemes.

Properties of means of a distribution conditional on being above or beneath a cutoff point t are

central to the analysis. Section II’s examples implicitly showed this and we will see it generally

in this section. The crucial values are the upper mean above the cutoff, At, the lower mean

below the cutoff, Bt, and the gap between the upper and lower means, At Bt. Properties

(i) and (ii) in Lemma 1 below are standard (see Bagnoli and Bergstrom, 2005). Properties (iii)

and (iv) strengthen results from Jewitt (2004). Proofs are in the Appendix.9

LEMMA 1 (Properties of Upper and Lower Means): Suppose density f q is analytic with

support on [q q] where f q  0 for q  q q and define At  E

qq  t


, Bt 

E

qq  t


. Then:

(i) A  0 and B  0.

9We state the lemma for support on [q q] rather than [0 1] to facilitate analysis of truncated distributions. Throughout the text
and proofs we will use “strictly increasing” to mean the first derivative is strictly positive everywhere, which is sometimes referred
to as “strongly”, and similarly for strictly quasiconcave, etc.
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FIGURE 5. HOW THE LOWER AND UPPER MEANS AND THEIR DERIVATIVES CHANGE WITH THE CUTOFF

(ii) For strictly logconcave f , A  1 and B  1.

(iii) For strictly decreasing f , A  12  B (for strictly increasing f , A  12  B ) with at

least one inequality strict.

(iv) For strictly quasiconcave f q the gap AB is strictly increasing iff f q  12E[q]
q, strictly decreasing iff f q  12q E[q], and strictly decreasing then increasing oth-

erwise.

As the cutoff t rises, some types who are below average in the upper region are shifted into

the lower region where they are above average, so the means A and B of both the upper and

lower regions rise as seen in Lemma 1(i) and Figure 5(b).10 For exact grading we need to know

more specifically how the gap t  B changes and for pass-fail grading we need to know more

specifically how the gap A  B changes.11 From Lemma 1(ii), if the density does not increase

in slope too rapidly (i.e., if it is logconcave), then the upper and lower means do not rise too

rapidly as the cutoff rises. In particular the result B  1 tells us that if there is a cutoff t such

that all types above that cutoff are exactly graded (x  t), then raising t increases the mean

of the uncertified region B at a rate slower than 1, as Figure 5(c) shows. Hence the gap t  B

between the marginal type who is graded exactly and the average quality of the uncertified pool

10E.g., “Professor Smith moved from Upstate U. to Downstate U., thus raising the quality of both.”
11The gap between upper and lower means is also central to binary signaling games (e.g., Benabou & Tirole 2006, 2011).



VOL. NO. COARSE GRADES 13

is increasing in t . Since this is the most the marginal type will pay to be certified, the cutoff for

the most informative feasible exact grading scheme increases with certification costs c when f

is logconcave. Most standard densities and all of our examples are logconcave (see Bagnoli and

Bergstrom, 2005), so finding the most informative exact grading scheme is straightforward.

Lemma 1(iii) implies that for f increasing, A  B , and for f decreasing, A  B , which is

Jewitt’s result that for monotonic f the gap A  B is monotonic in the opposite direction. This

was the case for the triangle densities in Figure 3. A decreasing density puts relatively more

mass at the lower end of each region, so a rise in t has more impact on the upper mean and the

gap rises. The reverse is true for an increasing density. Monotonicity implies that the maximum

gap is at either end of the support, so for a sufficiently high cost of certification the pass standard

(p  t) will be set either very high as in Figure 3(b) or very low as in Figure 3(c).

Lemma 1(iv) gives us exact conditions for the gap A B to be either monotonic or U-shaped

in t for strictly quasiconcave (that is, unimodal) f . It implies Jewitt’s result that for strictly

quasiconcave densities the gap A  B is strictly quasiconvex, and relaxes his conditions for

A  B to be monotonic by allowing for a small dip in the end of an otherwise increasing f or

a small rise at the beginning of an otherwise decreasing f .12 The distribution in Figure 5(a) has

f 0  f 1  0, so (iv) tells us that A  B must be U-shaped as seen in Figure 5(b), but it

also implies that a truncation sufficiently close to the mode on either side will instead ensure

monotonicity of A  B despite the lack of monotonicity of f .13 Note also that Aq Bq 
E[q]  q and Aq  Bq  q  E[q], so when A  B is U-shaped the maximum gap is at

whichever end is further from E[q].

For our first proposition we will generalize our finding that coarse grading outperforms exact

grading for the uniform distribution. Recall that for the uniform distribution, turning exact into

honors grading by introducing a “pass” region is always possible. We start with the exact scheme

12To see this suppose that f is strictly increasing on [0 1]. Since F is strictly convex


Fqdq encloses the right triangle

with base on [1  1
f 1  1], hypotenuse with slope equal to f 1, and height F1  1. The area of this triangle is 1

2 f 1 , so
Fqdq  1

2 f 1 , or 1  E[q]  1
2 f 1 implying the condition in (iv). This holds strictly even if f 1  0, so extending the

support to [0 1 ] where f 1   0 still satisfies the condition for   0 small enough. Similar logic holds for f decreasing
except for a small initial rise.

13Truncation to [21 1] implies the gap A  B is increasing even though f is increasing on [21 13], and truncation to [0 44]
implies the gap is decreasing even though f is decreasing on [13 44]. From the proof of Lemma 1(iv), these cutoffs follow since
A21  12 and B44  12, as seen in Figure 5(c).
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FIGURE 6. EFFECT OF COARSENESS ON EXPECTED LOSS

x and introduce honors grading by setting p  p slightly below h  x. Will types in p x

still participate? Yes, for uniform f , because the gain from passing relative to failing, E[qq 
p x]  E[qq  [0 p]]  x2, is constant in p for a given x. For the rising triangle

distribution and more generally for any rising f as shown in Lemma 1(iii), E[qq  p x]
E[qq  [0 p]] is decreasing in p, so it is always possible to introduce a pass region with p 

x that does not affect the proportion of types who are exactly graded. More generally though,

if creating the pass region does not reduce the fail region’s mean enough then the participation

constraint is no longer met for h  x. Hence, h will have to rise to maintain the incentive

to participate. This causes a loss in information, so it is no longer clear whether there is a net

benefit from introducing the pass region. This tradeoff arose with the falling triangle distribution.

Lemma 1(iii) tells us that it arises for all decreasing f , and Lemma 1(iv) tells us it can arise

generally with unimodal distributions.

Figure 6(a) shows a Beta (2,3) distribution where the pass cutoff is in the region of decreasing

f so that one might expect the same tradeoff. Since f 0  f 1  0, by Lemma 1(iv) the gap

is increasing in p after some internal minimum, and the same tradeoff does indeed arise.14 For

14The density of the Beta (,) distribution is logconcave (and hence quasiconcave) for all    1 (Bagnoli and Bergstrom,
2005), is strictly increasing for all     1 including the rising triangle distribution Beta (2,1), is strictly decreasing for all
    1 including the falling triangle distribution Beta (1,2).
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cost c  25, introducing a pass region with p  x requires increasing the exact cutoff from

x to some h  x so as to maintain participation. This change implies types in the fail interval

[0 p] contribute less to expected loss than under exact grading, because the pool is smaller,

with each type closer to the interval’s mean. Types in p x also contribute less, since they are

moved from the larger fail interval to the new pass region. On the other hand, types in [x h

contribute more to expected loss since they are no longer exactly revealed.

The following proposition says that despite the loss from putting some formerly revealed

senders into a pool, it is always possible to find a coarse scheme that outperforms the best exact

grading scheme. For marginal reductions in p below x there is a first-order effect on types in

[0 p], but only a second-order effect on types in p h because the pass interval is so small.

The result holds for Figure 6(a)’s example, and more generally. There is a tradeoff, because

fewer types will be exactly revealed, but more types will have at least a pass certification.

PROPOSITION 1 (Optimality of coarse grading): Exact grading is never optimal.

PROOF: See the Appendix.

Moreover, of all possible grading schemes — not just the three we have highlighted — the

best is either pass-fail or honors. Introducing numerous grading intervals, nonmonotonic grades,

exact grading in the middle of the quality range, etc. is unnecessary.

PROPOSITION 2 (Simple schemes): Either pass-fail or honors grading is optimal.

PROOF: See the Appendix.

Proposition 2 says that either pass-fail or honors grading always does as well or better than

more complicated schemes. The improvement over pure exact grading comes from the intro-

duction of a pass pool that increases the number of senders certified. The certifier’s fundamental

problem is to make the lowest pass pool more attractive than being uncertified. If that can’t be

done, no higher pass pool or exact grading interval will be attractive to senders. At the same time,

the ideal is to perfectly reveal the sender’s type. Thus, the certifier’s real tradeoff is between (a)

putting high quality types into the lowest pass pool and (b) revealing them exactly. In doing this,

the certifier also wants to keep the lowest pass pool connected, so that the difference between
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its extreme types and their mean is smaller and receivers can form a more exact estimate. This

is best done with a single pass interval, with exact grading for the best types — if that does not

come at too great a cost to the attractiveness of the pass pool.

We now consider which is best, pass-fail or honors grading, in particular circumstances.

PROPOSITION 3 (Pass-fail vs. honors): (i) As the certification cost c tends to 0, honors grad-

ing is optimal, with the mass of exactly revealed types tending to 1 and the mass of pass types

tending to 0. (ii) For f quasiconcave, as the certification cost c tends to the maximum feasible

level, the mass of exactly revealed types tends to 0, and the mass of pass types tends to 0 if

E[q]  12 and to 1 if E[q]  12.

PROOF: See the Appendix.

The first part of Proposition 3 states that honors grading is best for c sufficiently small. In this

case it is feasible to exactly grade even very low types, so it is best to have a small pass region

(as required by Proposition 1) and then exactly grade better types above a low honors cutoff.

The second part states that if c is sufficiently high the best scheme has both a small pass

region and a small honors region, no honors region at all, or a large pass region and a small

honors region. To understand why the honors region disappears for high certification costs, look

at Figure 6(b), which starts with the honors scheme p h that was in Figure 6(a). Figure 6(b)

then increases the pass region by dropping p to p, which requires increasing h to maintain

feasibility. Since costs are high and we started towards the upper end of the density, as we

increase the pass region, the honors region shrinks to nothing and we arrive at a pure pass-fail

scheme with h  1. Types in the interval [0 p] contribute less to total expected loss since

the pool is tightened, so each type is closer to the conditional mean. Types in p p also

contribute less since the types in this region have been moved from a larger to a smaller pool.

Types in p h contribute more information loss, however, because the pool these types are

in has expanded, as do types in region [h 1] because they were formerly exactly revealed.

Overall we have gained information on types in [0 p] and lost information on types in p 1].

Numerically, this adds up to a net improvement in information for the case in the figure, so h  1

is optimal and pass-fail is best.
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The role of E[q] in Proposition 3(ii) arises from the Lemma 1(iv) result that for quasiconcave

f the gap E[qq  p]  E[qq  p] reaches a global maximum at p  0 or p  1. When

E[q]  12, as in Figure 6, the p  1 case holds, so for large c the optimal feasible pass-fail

scheme is close to p  1 and it is best to have no honors region. When E[q]  12 the p  0

case holds, so for large c feasibility requires p close to 0 and h close to or equal to 1.

So far we have focused only on the informativeness of different schemes. Sometimes exact

grading is not only less informative but infeasible. A confused certifier who insisted on exact

grading would find that nobody would show up to be graded! This was the case for the rising

triangle distribution of Figure 4(c), where exact grading was not feasible even for many values of

c for which pass-fail and honors remained feasible. Proposition 4 says that honors and pass-fail

are always feasible when exact grading is, and then gives general conditions for when they are

feasible even if exact grading is not.

PROPOSITION 4 (Feasibility): (i) For any quality density f , if exact grading is feasible then

so is honors grading, and if honors is feasible then so is pass-fail. (ii) Pass-fail and honors

grading are both feasible for a range of grading costs so high that exact grading is not if:

(a) f q is strictly increasing; or

(b) f q is strictly quasiconcave and f 1  121 E[q]; or

(c) f q is strictly logconcave and E[q]  12.

PROOF: See the Appendix.

Proposition 4 shows the robustness of coarse grading even when the certifier might have differ-

ent objectives than we have assumed. Exact grading runs a greater risk of falling apart completely

because of refusal to participate.

IV. Extension: Letter Grading with Different Receiver Priors on Different Senders

We have followed the literature’s standard assumption of a single sender drawn from a distri-

bution or, equivalently, multiple senders from the same distribution. Now suppose the certifier

must use the same grading scheme for multiple senders when it is common knowledge that

senders have different quality distributions. For instance, consumers might know that one firm
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FIGURE 7. LETTER GRADING WITH DIFFERENT PRIORS

is likely to be better than another in environmental quality— they have sender-specific prior

information— but only the firms know their exact quality.

We are particularly interested in when multi-tier certification in the form of “letter grades”

is optimal. For example, the “LEED” certification system for building environmental impact

has “Certified,” “Silver”, “Gold”, and “Platinum” categories. For a firm with a good reputation,

receiving just a “Silver” rating might not be worth the certification cost, but for a firm with a

bad reputation such a rating might well be worth it. Hence, having different tiers might increase

participation when consumers have different prior distributions about different firms.

Consider a setting in which sender qualities follow logconcave densities and receivers know

whether a sender is drawn from a lower-range distribution with density fL over [q
L
 qL ] and a

higher-range distribution with density fH over [q
H
 q H ]. If the two distributions don’t overlap

(qL  q
H
), and both distributions have means closer to their lower support, the optimum for

sufficiently high costs is, from Proposition 3, pass-fail for each distribution of sender. Let the

optimal pass-fail cutoffs be pL and pH for the respective distributions. We can reframe these

two pass-fail schemes as a system with four grades: “A”, “B”, “C”, and “Uncertified”. In the

example, no B’s would be observed since types would not want to pay c to be certified as being

in the bottom region of their distribution.
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Now suppose the two densities overlap moderately with q
L
 q

H
 pL  qL  pH  q H as

in Figure 7,15 keeping the same relative values for the cutoffs pL  q
L
and pH  q

H
that were

optimal when there was no overlap. Suppose the certifier assigns “Uncertified” for q  pL ,

“B” for q  [pL pH , and “A” for q  pH . The senders which apply cannot do better by being

uncertified, because the cutoffs were chosen in the original example to make this unprofitable and

nothing has changed in the senders’ incentives. The high-distribution senders in pL pH ] that

do not apply would receive B’s if they unexpectedly applied, but the cost c is too high for that to

benefit them, since for any beliefs, the expected payoff is strictly less than for receiving an A and

pH has been set so that types in the A region are just indifferent to certification. Hence, given the

grading scheme, it is a Perfect Bayesian Equilibrium for high-distribution senders in pH  q H ]

to apply and get A’s, low-distribution senders in pL qL ] to apply and get B’s, and the remaining

senders to not apply. Is the grading scheme still optimal for the certifier? For sufficiently high c,

pH is arbitrarily close to q H , so pH  qL as in Figure 7 and there is effectively no interaction

between grading for the different distributions. Hence the scheme that is individually best for

each distribution remains the best for the combined case.

This shows that when receivers have information about sender quality that makes the prior

distributions for each sender differ, the combination of that information with certifier grading

can lead to more complicated grading schemes being optimal, including those with multiple

grades.16 Based on this example we have the following proposition.

PROPOSITION 5 (Letter grades): If the same grading scheme must be used for senders with

different quality distributions, then sometimes the most informative scheme uses multiple coarse

letter grades and does not report any quality exactly.

V. Literature Discussion and Conclusion

We have shown that a certifier who is trying to maximize information to the public should,

paradoxically, coarsen his information before reporting it. Rather than simply revealing what he

15Figure 7 uses two Beta (3,6) distributions, one with support on [0 1] and the other renormalized with support on [12 32].
The shown cutoffs pL and pH are optimal for c  13.

16Other models can also generate multi-tier certification. When abilities are heterogeneous, Dubey & Geanakoplos (2010) show
that letter grades can maximize effort from status-concerned students by forcing them to compete for a limited number of good
grades. Farhi, Lerner, and Tirole (2013) consider different pass-fail standards set by different certifiers.
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has measured, the certifier will reveal only part of what he knows, and in some situations will

only reveal whether a sender passes a quality threshold. The certifier faces a tradeoff between

coarse grading, which attracts more senders to be certified, and fine grading, which informs the

public better about the senders attracted. We show that the optimal tradeoff always involves

some coarseness.

Two strands of the literature are most closely related to the situation we model. The first

looks at the alternative setting in which a for-profit certification intermediary designs a scheme

to maximize rent extraction from senders afraid of receiver beliefs about their quality if they lack

certification. Lizzeri (1999) shows that the profit-maximizing scheme is pass-fail with all but the

very worst type of sender receiving a passing grade. By certifying almost everyone, the certifier

can extract a certification fee from almost everyone. Since each sender is afraid of being pooled

with the minute number of bottom-quality senders who remain uncertified, the fee can be large.

Our model differs in assuming that the certifier aims to maximize receiver information, as in the

case of a non-profit certifier who charges just enough to cover the costs of certification or who

charges nothing but requires senders to bear some cost in providing information. The certifier

introduces coarseness not to gain profits, but to induce participation by senders who want to

distinguish themselves from worse senders but do not want to be distinguished from even better

senders.

A second strand of the literature concerns certifiers who maximize the senders’ benefit by

obscuring the information the public receives. Indeed, the ideal would be to perfectly fool the

public. In these models the certifier can also be thought of as a sender who precommits to an

information policy that maximizes his ex ante payoff before learning his type. Ostrovsky &

Schwarz (2010) consider when colleges can maximize student job prospects by grading schemes

which pool weaker and stronger students together. The average quality of students at Yale might

be so high that they will all get jobs if grades are uniformly As, but weaker students might not

get jobs if they are revealed as weak.17 Rayo & Segal (2010) also consider the gains from pool-

ing, and Kamenica & Gentzkow (2011) and Gentzkow & Kamenica (2014) analyze the general

17Pooling can also maximize a biased sender’s payoff even without commitment or verifiable information (Chakraborty and
Harbaugh, 2007). Note that in the current model the certifier commits to withhold some information to encourage participation
despite the ex post incentive to reveal all information.
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Bayesian persuasion problem of using such concavification strategies to maximize the sender’s

payoff. Our environment with a certification intermediary between the sender and receiver does

not reduce to a standard Bayesian persuasion problem in which the sender sets an information

structure. Although the certifier wants to induce participation by raising posterior estimates

above a threshold, which is encouraged by pooling as in Bayesian persuasion, such pooling also

reduces information to the receiver, which hurts the certifier. The certifier would always re-

veal his information to receivers exactly were it not for the need to encourage participation by

senders.

Other important reasons for coarse grading have also been analyzed in the literature but we

have abstracted from them in our model. We assume that coarse and fine grading are equally

costly. Titman & Trueman (1986), Farhi, Lerner & Tirole (2011), and others consider the case

where finer grading costs more. We assume that the certifier can provide verifiable information

about quality, but it might be that the certifier’s credibility is not assured, in which case a coarse

report can be more credible than an exact report (Crawford & Sobel, 1982; Morgan & Stocken,

2003; Chakraborty & Harbaugh, 2007). If there are a large number of certifiers with different

objectives, grades can be coarse because each certifier optimally chooses a different pass-fail

standard (Lerner & Tirole, 2006).18 If the audience can be overwhelmed by too much informa-

tion, then even if they are rational their differing use of it may arrive at a worse result, either

because they choose to acquire less (Eppler &Mengis, 2004) or because it worsens coordination

problems (Chahrour, 2014).

We take quality as exogenously given, but certification can affect the incentive of senders to

invest in quality. In our model informed consumers are more likely to buy higher rather than

lower quality goods so there is a positive incentive effect from revealing information, but we do

not model the exact incentive effect. In some situations maximizing effort itself might be the

certifier’s goal. Costrell (1994) considers how high to set a pass-fail standard to maximize stu-

dent effort taking the pass-fail system as given. In contest environments, Moldovanu, Sela & Shi

(2007) and Dubey & Geanakoplos (2010) show that coarse grades can induce more competition

18They assume a continuum of certifiers who each put some different, varying weight on a mix of firm profits and consumer
surplus, thus leading to a continuum of different standards that firms can pick from. Since firms choose the hardest standard they
can meet, exact information is revealed.
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when abilities are heterogeneous. Boleslavsky & Cotton (2015) analyze competition between

schools to help students in the job market, and find that schools will not provide exact informa-

tion on students, which in turn induces the schools to exert more effort to increase the quality of

both good and bad students.

Our approach adds to this rich literature by showing how coarseness is optimal in the environ-

ment that would seem least conducive to it — when the certifier is explicitly trying to maximize

information to the public and the testing process produces a continuous score that the certifier

could choose to report. Related to our approach, Rosar & Schulte (2012) address the design of

tests to minimize weighted mean squared error when the quality of risk-averse agents is high or

low. They find that for a risk averse agent, a pass-fail test with no false positives is often optimal

because it induces agents to volunteer for the test despite the risk of ending up with a worse

public image.

Our results depend on there being some cost of certification so coarseness can play an impor-

tant role in encouraging participation. Studies find that certification costs can be a substantial

fraction of total costs (Vitalis, 2002),19 and that the process of applying for certification can

be lengthy and compete for limited managerial resources.20 Given these costs, the decision of

whether to certify product quality is highly dependent on the effect on buyer willingness to pay.

Our analysis shows how the coarseness of the grading scheme affects buyer estimates of product

quality and thereby affects the incentive of marginal senders to participate.

An alternative explanation for coarse grading is that receivers have difficulty processing exact

information. This explanation is at odds with the detailed information available on consumer

evaluation websites as discussed in the Introduction. Nevertheless, there have been proposals

for government agencies to make mandatory labels less exact so as to help consumers. The

Energy Policy Act of 2005 directed the Federal Trade Commission to consider switching the

mandatory EnergyGuide label to a coarse star-ranking scheme for this reason. However, after

reviewing the evidence on how consumers use labels and performing its own tests, the FTC

19The main association of small and medium businesses in the European Union listed its primary requested revision in eco-label
policy as, “An overall reduction of the costs, in particular the costs of the technical tests required in order to show the respect of the
criteria.” (See “UEAPME’s Position on the Revision of the Eco-label Regulation,” UEAPME, November, 2008), p. 4.

20The 2010 Global Ecolabel Monitor found that the average time between filing the application for an ecolabel and being awarded
the label was 4.3 months.
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determined that consumers learned most from exact information about expected energy costs

(Farrell, Pappalardo & Shelanski, 2010).21 From the perspective of our model, this is consistent

with the use of coarse labels by non-governmental organizations being driven not by consumer

difficulty in understanding exact labels but by the need to encourage sender participation. For

mandatory schemes where participation incentives are not a factor, shifting away from exact

grades would hurt rather than help consumers.

VI. Appendix

LEMMA 1 (Properties of Upper and Lower Means): Suppose density f q is analytic with

support on [q q] where f q  0 for q  q q and define At  E

qq  t


, Bt 

E

qq  t


. Then:

(i) A  0 and B  0.

(ii) For strictly logconcave f , A  1 and B  1.

(iii) For strictly decreasing f , A  12  B (for strictly increasing f , A  12  B ) with at

least one inequality strict.

(iv) For strictly quasiconcave f q the gap AB is strictly increasing iff f q  12E[q]
q, strictly decreasing iff f q  12q  E[q], and strictly decreasing then increasing

otherwise.

Proof: (i) Integrating by parts,

E[qq  [a b]] 
 b

a f qqdq

F b Fa
(4)

 bF b aFa

F b Fa

 b

a Fqdq

Fb Fa


21The EPA made a similar analysis of how to represent information about greenhouse gases and smog damage in the new version
of its mandatory gas mileage labels, and chose to use a fine 1–10 scale. It also chose to continue reporting exact mileage and
gasoline cost information rather than coarsen the information. See http://epa.gov/otaq/carlabel/labelcomparison.htm.
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Applying this to At and Bt,

At  d

dt
E[qq  [t q]]  f t  q  t   q

t F q dq

1 Ft2

 f t

1 Ft
A  t(5)

B t  d

dt
E[qq  [q t]] 

f t
 t

q Fqdq

F2

 f t

Ft
t  B (6)

Equations (5) and (6) imply that At  0 for t  q and Bt  0 for t  q. As for t  q,

first suppose f q  0. We will start with Bt. By l’Hopital’s rule,

lim
tq

B t  lim
tq

f t
 t

q Fqdq

Ft2
 lim

tq

f t
 t

q Fqdq  f t  Ft

2 f tFt

 1

2
 lim

tq

f

t
 t

q Fqdq  f tFt

2 f tFt 2 f t2

 1

2
 0(7)

If, instead, f q  0, then applying l’Hopital’s rule n more times until f nq  0, yields22

(8) B q  n  1n  2  12  0

One may obtain Aq  12  0 by similar operations.

(ii) Logconcavity is inherited by integration (Prekopa, 1973), so logconcavity of f implies log-

concavity of F and hence of
 t

q Fqdq. Logconcavity of
 t

q Fqdq implies f t
 t

q Fqdq 

Ft2; see d2

dt2
ln
 t

q Fqdq. From (5), f t
 t

q Fqdq  Ft2 implies Bt  1.

22For f q  0, the truncated distribution converges to a uniform distribution, and for f q  0 and f q  0 the truncated
distribution converges to a triangle distribution. If f nq  0 for all n, then since f is analytic, f q  0 in the neighborhood of
q, which contradicts the assumption f  0 for q  q q.
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Similarly, logconcavity of f q implies the reliability function 1  Fq is logconcave (see

Bagnoli and Bergstrom, Theorem 3, 2005). Inheritance of logconcavity by integration therefore

implies qt q
t Fqdq is logconcave, which implies f tqt q

t Fqdq  1Ft2,

which from (5) implies At  1.

(iii) Differentiating (5) and (6) and substituting,

(9)
At  f t

f t A  2A  1
 f t
1Ft

B t  f t
f t B   1 2B 

 f t
Ft 

First consider f decreasing so f q  0. From (7), B q  12, and from (9), f   0

implies B   0 evaluated at any t such that B  12, so B  cannot rise above 12 for any t .

Hence B  12 with equality only at t  q. Similarly, Aq  12, and from (9), f   0

implies A  0 evaluated at any t such that A  12, so A cannot fall below 12 for any

t . So A  12 with possible equality only at t  q. Applying the same logic for f strictly

increasing, A  12  B , with equalities possible only at t  q and t  q respectively.

(iv) We first establish quasiconvexity. Since the gap A  B is twice differentiable, it is qua-

siconvex if A  B  implies that A  B . First consider A  B   12. From (9) this

implies A  B , as required. Now consider A  B   12. Strict monotonicity (and hence

quasiconvexity) follows from Lemma 1(iii) if f is monotonic, so suppose it is not andq is its in-

ternal mode. Strict quasiconcavity of f implies that f is strictly increasing in [qq] and strictly
decreasing in [q q]. So from Lemma 1(iii) B   12 in [qq], with possible equality only at
t  q, and A  12 in [q q] with possible equality only at t  q. Hence A  B  12 is not

possible, and A  B  12 is only possible at t  q q, in which case (9) implies A  B ,

as required.

Given that A B is quasiconvex, it is strictly quasiconvex if the set of t such that A  B  has

measure zero. There is at most one t where A  B   12 since A  B  at any such point,

implying no other crossings are possible. And as shown above there are at most two points,

t  q q, where A  B   12. Hence A  B is strictly quasiconvex.

By strict quasiconvexity, A B is either strictly monotonic or first strictly decreasing and then
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strictly increasing. Therefore for A B to be strictly increasing it is necessary and sufficient that

it be strictly increasing at the lower bound. Note from (5) that Aq  f qE[q] q and that

B q  12 for f q  0. Therefore f qE[q]  q  12 is equivalent to A  B strictly

increasing. Similarly, for A  B to be strictly decreasing it is necessary and sufficient that it be

decreasing at the upper bound, Aq  Bq or, 12  f qq  E[q]. If neither condition

holds, then by strict quasiconvexity it must be that A  B is first strictly decreasing then strictly

increasing. ¥

PROPOSITION 1 (Optimality of coarse grading): Exact grading is never optimal.

Proof: Consider a feasible exact scheme x , where all types q  x apply for certification, and an

honors scheme p h. If an honors scheme with p  x and h  x is feasible it clearly has lower

expected loss than the exact scheme. Suppose this is not the case, so instead p  x requires

h  x for feasibility. Let ph be a continuous decreasing function on [x 1] that picks a feasible

p, where px  x is the exact scheme. Such a function must exist in the right-neighborhood

of h  x since px  x is feasible by assumption and E[qq  p h]  E[qq  [0 p]] is

increasing in h from Lemma 1(i).

Setting p  ph in (3), the marginal impact on expected loss of raising h from h  x to

create an honors scheme with ph h is

(10)

dp
dh ph E[qq  ph]2 f ph

2


d
dp E[qq  ph] dp

dh

  ph
0 q  E[qq  ph] f qdq

 h  E[qq  ph h]]2 f h

 dp
dh


ph E[qq  ph h]]2 f ph


2  d

dh E[qq  ph h]]  h
phq  E[qq  ph h]] f qdq

The first term of (10) is negative because dp
dh  0 by construction, while the second term is zero

since the mean E[qq  p] minimizes
 p
0 q  E[qq  p]2 f qdq. The third, fourth, and

fifth terms are zero evaluated at h  x since px  x by construction. Hence, starting from the
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exact scheme p  h  x , expected loss can always be reduced by creating an honors scheme.

¥

PROPOSITION 2 (Simple schemes): Either pass-fail or honors grading is optimal.

Proof: Proposition 1 rules out exact schemes from being optimal. Any other scheme has at

least one pool, i.e., a set of types sending the same message. Denote by p the lowest cutoff

for any certified pool and by h the lowest cutoff for any exact grading interval. We can rule

out schemes with p  h because the pooled types above p could be exactly revealed without

affecting feasibility. We can also rule out schemes where there are uncertified types above h

since this those types could be revealed exactly, while lowering the mean of the uncertified types,

thereby improving the feasibility of all certified messages. Therefore, any potentially superior

scheme different from pass-fail or honors must be one of three types: (i) there are multiple pools

of certified types, or (ii) there is one pool but it is split by an interval of exact grading and/or (iii)

there is one pool, but some types above p and below h are uncertified. We will show that none

of these alternatives is better than pass-fail or honors grading.

(i) Suppose there are multiple certified pools with means i for i  1  N . If any pools have

different means then there is slack in the feasibility constraint for all but the lowest i pool, and

we could exactly reveal some types in those pools and maintain feasibility. So the optimal such

scheme must have all i equal to some value  sufficiently above the mean of the certifieds. But

then all the messages for the certified pools convey the same expected value. Each pooled type

q contributes q  2 f q to total loss, so one pool is as good as multiple pools.

(ii) Suppose the one pool of certified types, denoted by P , which we now refer to as the “pass

types”, is split so some of the pass types are above h. Noting from (iii) below that there will

be no uncertified types above p, the lower interval of pass types is p h. Let g g be the

lowest interval of pass types above h, so g  h. If g  g  1 there is no information gain.

Otherwise, we can use total differentiation to show how h must rise to keep the pool mean equal

to its original mean  as we increase g, and then show that this will reduce loss, so having the

upper passing interval is suboptimal. Noting that there may be more than one interval of types
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in P above h,

(11)  
 h

p q f qdq   g
g q f qdq  qPqg q f qdq h

p f qdq   g
g f qdq  qPqg f qdq



If   h then pooled types are viewed more positively than the lowest exactly revealed type, so

there is slack in the feasibility constraint for the pooled types and some can be revealed exactly

to reduce loss. Thus the case of interest is   h. Multiplying out (11) yields 
 h

p f qdq  g
g f qdqqPqg f qdq h

p q f qdq g
g q f qdqqPqg q f qdq  0, which

when totally differentiated to raise g and have h adjust to maintain  gives

(12)  f hdh   f gdg  h f hdh  g f gdg  0

so

(13)
dh

dg
 f g

f h


g  
h  




Now we can differentiate the expected loss from the lower and upper intervals of the pool (the

exactly revealed types in [h g] create zero loss) and see how it changes by substituting for dh
dg :

(14)

d
dg

 hg
p q  2 f qdq   g

g q  2 f qdq


 dh
dg


h  2 f h g  2 f g

 f g


g
h

h  2  g  2

 f gg  h  g  0

where the final inequality follows from g   and h  g. Therefore we can increase both g and

h, reducing loss while preserving feasibility, and the original split pool scheme cannot have been

optimal.
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(iii) Suppose some types greater than p are uncertified and u u is the lowest open uncertified

interval above p. Define u as the mean of all the uncertified intervals and p as the mean of all

the pass types, which by feasibility implies u  p.

Consider the contribution to expected loss of just types in [0 p], p u, and u u:

(15)
 p

0
q  u

2 f qdq 
 u

p
q  p

2 f qdq 
 u

u
q  u

2 f qdq

Let us see what happens if we increase p and u to get the same increase in probability mass, i.e.,

d p f p  du f u. This maintains feasibility since the mean of the pass pool rises, and hence

since the mass of each types is kept constant, by the law of iterated expectations the mean of the

uncertified pool falls. Differentiating equation (15) and substituting d p f p  du f u yields

p  u
2 f pd p  p  p

2 f pd p  u  p
2 f udu  u  u

2 f udu(16)

 p  u
2 f pd p  p  p

2 f pd p  u  p
2 f pd p  u  u

2 f pd p

 2


p  u
 
p  u


 0

where the inequality follows since p  u by definition and u  p by feasibility. Therefore

loss goes down, implying the original scheme cannot be optimal.

Thus, schemes (i), (ii), and (iii) are ruled out and the proposition is proved. ¥

PROPOSITION 3 (Pass-fail vs. honors): (i) As the certification cost c tends to 0, honors grad-

ing is optimal, with the mass of exactly revealed types tending to 1 and the mass of pass types

tending to 0. (ii) For f quasiconcave, as the certification cost c tends to the maximum feasi-

ble level, the mass of exactly revealed types tends to 0 and the mass of pass types tends to 0 if

E[q]  12 and to 1 if E[q]  12.

Proof: (i) We know from Proposition 1’s proof that the expected loss from honors grading is

less than from exact grading for any c such that either scheme is feasible, as is the case for c

sufficiently small. For sufficiently small c it must be that expected loss from exact grading is less

than from pass-fail. As c approaches zero, the expected loss under exact grading approaches 0 if
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h goes to 0, while expected loss under pass-fail is bounded from below by either the pass pool’s

or the fail pool’s contribution to expected loss,

(17) min
p
max

 p

0
q  E[qq  p]2 f qdq

 1

p
q  E[qq  p]2 f qdq


 0

Therefore, as c tends to 0 the optimal scheme is honors grading with h tending to 0. So pc

must also go to 0 since p  h by definition.

(ii) Note that for any p, E[qq  p h] is increasing in h by Lemma 1(i), so as c increases to

its maximum feasible level, h goes to 1. For quasiconcave f Lemma 1(iv) tells us that, for a

given h, the gap

(18) E[qq  p h] E[qq  p]

is maximized at either p  h or p  0 depending on E[q].

First, if E[q]  12 the gap (18) is maximized at p  h. As established above, if c is large

enough then h  1 or is arbitrarily close to 1, so the mass of both exact types and pass types is

arbitrarily close to 0.

Second, if E[q]  12 the gap (18) is maximized at p  0. As c tends to E[q], to maintain

feasibility p must tend to 0 and h must be equal to or tend 1, so the mass of pass types tends to

1. ¥

PROPOSITION 4 (Feasibility): (i) For any quality density f , if exact grading is feasible then

so is honors grading, and if honors is feasible then so is pass-fail. (ii) Pass-fail and honors

grading are both feasible for a range of grading costs so high that exact grading is not if:

(a) f q is strictly increasing; or

(b) f q is strictly quasiconcave and f 1  121 E[q]; or

(c) f q is strictly logconcave and E[q]  12.

Proof: Let cx  cp, and ch represent the highest feasible certification costs for any exact, pass-

fail, and honors grading scheme respectively: cx  supx[01c  x  E[qq  x], cp 
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supp[01E[qq  p]  E[qq  p], and ch  supp[0hh01E[qq  p h]  E[qq 
p].

(i) We want to show cp  ch  cx . Consider any x such that exact grading is feasible and set

p  x and h  x 1 for an honors scheme. Since E[qq  p h]  p  x , it must be that

E[qq  p h] E[qq  p]  x  E[qq  x], so honors grading is also feasible. Similarly,

for any h  1, E[qq  p]  E[qq  p h] so if honors grading is feasible so is pass-fail
grading with the same p but h  1.

(ii) From (i) it is sufficient to show that ch  cx .

(a) Start with honors. By Lemma 1(iii) the assumption f   0 implies E[qq  p h] 
E[qq  p] is strictly decreasing in p, and by Lemma 1(i) E[qq  p h] is increasing
in h. Thus to maintain feasibility as c increases we need p to approach 0 and h to approach

1. Therefore, ch  E[qq  0]  0  E[q]. Note E[q]  12 since f   0 so ch 

12. As for exact grading, the assumption f   0 implies E[qq  x]  x2, so cx 
supx[01 x  E[qq  x]  supx[01 x  x2  12. Hence, ch  12  cx .

(b) Again starting with honors, by Lemma 1(iv), f 1  121  E[q] implies that

E[qq  p h]  E[qq  p] reaches a maximum at p  0 for any h. And by Lemma

1(i), E[qq  p h] is increasing in h, so again ch  E[qq  0]  0  E[q]. As for

exact grading, note that E[qq  x]  x , so if an exact scheme is feasible so is a pass-fail

scheme with p  x . Hence cx  cp, with strict inequality if p  x  1. From Lemma 1(iv),

E[qq  p] E[qq  p] is decreasing in p. Hence cp is maximized at p  0, in which case

we have the strict inequality cx  cp. Finally, note that for p  0, cp  E[q]  0  E[q].

Thus, cp  ch . Hence, since cx  cp, we have ch  E[q]  cx .

(c) Honors grading with p  0 and h arbitrarily close to 1 is feasible for all c  E[q], so

ch  12. As for exact grading, for f logconcave, Lemma 1(ii) implies x  E[qq  x] is

maximized at x  1, so cx  1 E[q], which is less than 12 since by assumption E[q]  12.

Therefore ch  cx . ¥
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