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Abstract

When can you trust an expert to provide honest advice? We develop and experimentally

test a recommendation game where an expert helps a decision maker choose among two actions

that each benefit the expert and an outside option that does not. For instance, a salesperson

recommends one of two products to a customer who may purchase nothing. Behavior is

largely consistent with predictions from the cheap talk literature. For sufficient symmetry,

recommendations are persuasive in that they benefit the expert by lowering the chance that

the decision maker takes the outside option. If the expert is known to be biased toward either

action, such as a salesperson receiving a higher commission on one product, the decision maker

partially discounts a recommendation for it and is more likely to take the outside option. If the

bias is uncertain, then biased experts lie even more, while unbiased experts follow a political

correctness strategy of pushing the opposite action so as to be more persuasive. Even if

the expert is known to be unbiased, when the decision maker already favors an action the

expert panders toward it, and the decision maker partially discount the recommendation. The

comparative static predictions hold with any degree of lying aversion up to pure cheap talk,

and most subjects exhibit some limited lying aversion. The results highlight that transparency

of expert incentives can improve communication, but need not ensure unbiased advice.
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1 Introduction

Experts provide information about different choices to decision makers. But experts often benefit

more from some choices than from others, such as a salesperson who earns a higher commission

on a more expensive product and receives nothing if the customer walks away. Can an expert’s

recommendation still be persuasive with such conflicts of interest, or will it be completely dis-

counted? What if the decision maker suspects that the expert benefits more from one choice but

is not sure? And how is communication affected if the expert knows that the decision maker is

already leaning toward a particular choice?

These issues are important to the design of incentive and information environments in which

experts provide advice. In recent years, the incentives of mortgage brokers to recommend high-

cost loans (Agarwal et al., 2014), of financial advisors to provide self-serving advice (Egan et al.,

2016), of doctors to prescribe expensive drugs (Iizuka, 2012), and of media firms to push favored

agendas (DellaVigna and Kaplan, 2007) have all come under scrutiny. Can such problems be

resolved by requiring disclosure of any conflicts of interest, or is it necessary to eliminate biased

incentives?1 And are unbiased incentives always sufficient to ensure unbiased advice?

To gain insight into such questions, several papers have applied the cheap talk approach of

Crawford and Sobel (1982) to discrete choice environments where an expert has private informa-

tion about different actions and the decision maker has an outside option that is the expert’s least

favored choice (e.g., De Jaegher and Jegers, 2001; Chakraborty and Harbaugh, 2007, 2010; Che,

Dessein, and Kartik, 2013).2 Based on this literature, we develop and test a simplified recommen-

dation game in which an expert knows which of two actions is better for a decision maker, and

may have an incentive to push one of the actions more than the other. The decision maker can

take either action or pursue an outside option. Despite its simplicity, the model captures several

key phenomena from the literature.

First, for sufficient payoff symmetry, recommendations are “persuasive” in that they benefit

the expert by reducing the chance that the decision maker walks away without taking either action.

Even though a recommendation is only cheap talk, it is still credible since it raises the expected

value of one action at the opportunity cost of lowering the expected value of the other action. Such

“comparative cheap talk” is persuasive since the higher expected value of the recommended action

1Conflict of interest disclosure may be imposed by regulators (see for instance, the SEC’s regulation of investment

advisors), or voluntarily adopted, as many medical journals have done for authors. Regulations can impose more

equal incentives, e.g., requirements for “firewalls” that limit the gains to stock analysts from pushing their firm’s

clients, and incentives may also be adjusted voluntarily to increase credibility, e.g., Best Buy promotes its “non-

commissioned sales professionals” whose “first priority is to help you make the right purchasing decision”.
2See also Bolton, Freixas, and Shapiro (2007), Inderst and Ottaviani (2012), Chung (2012), and Chakraborty

and Harbaugh (2014).
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is now more likely to exceed the decision maker’s outside option. For instance, a customer is more

likely to make a purchase if a recommendation persuades him that at least one of two comparably

priced products is of high quality. In our experimental results, we find that recommendations

are usually accepted, and are almost always accepted when the decision maker’s outside option is

unattractive.

Second, when the expert is known to be biased in the sense of having a stronger incentive to

push one action, a recommendation for that action is “discounted” in that the decision maker

is more likely to ignore the recommendation and stick with the outside option. Therefore, in

equilibrium, the expert faces a tradeoff where one recommendation generates a higher payoff if

it is accepted while the other recommendation is more likely to be accepted. In our experiment,

we find that experts are significantly more likely to recommend the more incentivized action than

the other action, while decision makers are significantly less likely to accept a recommendation

for the more incentivized action than the other action.

Third, when the decision maker is known to already favor one action before listening to the

expert, the expert benefits by “pandering” to the decision maker and recommending that action

even when the other action is actually better. Hence, biased recommendations can arise even

when the expert’s incentives for each action are the same (Che, Dessein, and Kartik, 2013). The

decision maker anticipates such pandering and, just as in the asymmetric incentives case, discounts

a recommendation for that action so that the incentive to lie is mitigated. In our experiment,

we find that experts are significantly more likely to recommend the favored action than the other

action, and decision makers are significant more likely to discount such a recommendation than

when the prior distribution of decision maker values is symmetric.

Finally, when the decision maker is unsure of whether the expert is biased toward an action,

a recommendation for that action is suspicious and hence discounted by the decision maker, so

an unbiased expert has a “political correctness” incentive to recommend the opposite action even

if it is not the better choice (c.f., Morris, 2001). For instance, if a salesperson is suspected to

benefit more from selling one product than another product but in fact has equal incentives, then

pushing the other product is more attractive since it is more likely to generate a sale. In our

experiment we find that, as predicted, lack of transparency induces unbiased experts to make the

opposite recommendation from that made by biased experts. Decision makers do not appear to

sufficiently discount such recommendations, suggesting that they may not always anticipate how

lack of transparency warps the incentives of even unbiased experts.3

Most of the experimental literature on cheap talk has focused on testing different implications

of the original Crawford and Sobel (1982) model, and typically finds that experts are somewhat

3Our “unbiased” experts are still biased against the outside option, rather than sharing the decision maker’s

preferences (e.g., Morgan and Stocken, 2003).
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lying averse (e.g., Dickhaut, McCabe, and Mukherji, 1995).4 Based on this literature we expect

subjects to be reluctant to lie, and in particular we expect the strength of this aversion to vary

across subjects (Gibson et al., 2013).5 Therefore we depart from a “pure” cheap talk approach

and assume that the expert has a lying cost that is drawn from a continuous distribution with

support that could be arbitrarily concentrated near zero.6 Lying aversion is not necessary for

communication in our game but its inclusion makes the model more testable by eliminating extra

equilibria that involve babbling/pooling, that have messages implying the opposite of their literal

meanings, and that have strategic mixing between messages.7

In our experimental tests, we cannot control for varying subject preferences against lying, so

the exact lying rates and acceptance rates cannot be predicted beforehand. However, we find

that the comparative static predictions of the model are the same for any distribution of lying

costs, so we can test these predictions even without knowing the exact distribution of subject

preferences against lying. Moreover, since communication incentives in the model with lying costs

are still driven primarily by the endogenous opportunity cost of messages, these comparative static

predictions are the same as in the most intuitive equilibrium of the limiting case of pure cheap

talk. Hence the model’s predictions are consistent with the insights generated by the theoretical

cheap talk literature.

Our experimental results on the benefits of transparency contrast with results in the literature

based on different models. Cain, Loewenstein, and Moore (2005) find experimentally that subjects

do not fully discount recommendations by experts with known biases. We find that discounting

rates by decision makers are instead slightly higher than the best response rate of discounting.

4See also Cai and Wang (2006), Sánchez-Pagés and Vorsatz (2007), and Wang, Spezio and Camerer (2010).

This literature has been extended to test Battaglini’s (2002) results on cheap talk by competing experts in a

multidimensional version of the Crawford-Sobel model (Lai, Lim, and Wang, 2015; Vespa and Wilson, 2016). In

a costly communication model, Lafky and Wilson (2015) investigate how incentives for information provision can

both encourage communication and make it less credible. Blume, DeJong, Kim, and Sprinkle (1998, 2001) test

players’ ability to successfully coordinate on the equilibrium meaning of messages when preferences are aligned or

partly aligned. There is also a large literature on pre-play communication about strategic intentions in games with

complete information (Crawford, 2003).
5We do not consider the range of factors that can affect lying aversion (Gneezy, 2005; Sutter, 2009; Sobel, 2016;

Gneezy et al., 2018). To reduce the reputational costs of lying (Abeler, Nosenzo, and Raymond, 2016), we use

random matching and emphasize the anonymity of the procedure to subjects.
6Since messages have a direct effect on payoffs as in a (costly) signaling game, the model is a form of “costly

talk” (Kartik, Ottaviani, and Squintani, 2007) or, as lying costs become arbitrarily small, “almost cheap talk”

(Kartik, 2009).
7With no lying aversion or homogeneous lying aversion, the expert is indifferent in equilibrium and uses a mixed

strategy of lying or not. Heterogeneous lying aversion purifies these strategies since experts with lower lying costs

strictly prefer to lie while those with higher lying costs strictly prefer to tell the truth. As shown in Section 4.3, we

find evidence for heterogeneous lying aversion in our experiment.
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They also find that lying is less common when biases are undisclosed because disclosure can allow

experts to feel more license to exaggerate. We find that, as predicted, lying rates are higher when

decision makers are unsure if the expert is biased. In the theory literature, Li and Madarász (2008)

find that disclosure of the expert’s bias in the Crawford-Sobel model can harm communication.

In a model closer to ours, Chakraborty and Harbaugh (2010) find that disclosure of biases ensures

the existence of informative equilibria, while lack of transparency can undermine communication

but need not preclude it.

The model’s predictions are related to the literature on credence goods, which examines rec-

ommendations to buy a cheap or an expensive version of a product (Darby and Karni, 1973).8

Building on the Pitchik and Schotter (1987) model, De Jaegher and Jegers (2001) consider a

doctor who recommends either a cheap or an expensive treatment to a patient whose condition is

either severe or not; the expensive treatment works for both conditions, but the cheap treatment

works only if the condition is not severe. For some parameter ranges, their model has a mixed

strategy equilibrium with aspects of pandering and discounting since a cheap treatment is more

attractive for the patient and an expensive treatment is more lucrative for the doctor.

The predictions are also related to the literature on cheap talk in repeated games with a binary

decision and no outside option. Sobel (1985) shows that, in such games, recommendations are

discounted based on the strength of the expert’s incentive to push their favored action relative

to reputational costs. Morris (2001) shows how an unbiased expert avoids making the same

recommendation as a biased expert so as to maintain a reputation for not being biased. Our one-

period model captures similar tradeoffs in an easily testable framework. Rather than leading to

a future reputational loss, being perceived as biased leads to the immediate loss that the decision

maker is more likely to take the outside option.

In the following section, we present the simplified recommendation game and provide testable

hypotheses based on its equilibrium properties. We then outline how we test the hypotheses

experimentally and report on the experiment results.

2 Recommendation Game

A decision maker chooses one of two actions,  or , or an outside option . These options have

respective values to the decision maker of   and  . An expert knows  and  but the

decision maker only knows their distribution. The decision maker knows  but the expert only

knows its distribution. The expert earns   0 or   0 if the decision maker chooses action 

or  respectively, but earns nothing ( = 0) if the outside option  is chosen. The expert first

sends a message  ∈ {} to the decision maker. The decision maker observes the message
8Dulleck, Kerschbamer, and Sutter (2011) test this problem in a pricing rather than cheap talk context.
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, learns the value  , and then chooses the action  or  or the outside option  to maximize

her expected payoffs given her beliefs. The equilibrium concept is Perfect Bayesian Equilibrium

so, along the equilibrium path, the decision maker’s beliefs follow Bayes rule based on the expert’s

communication strategy, which maps the expert’s information to the message space.

We tailor this general model to facilitate testing in our laboratory experiment. First, we

assume that the action values  and  have a two-point distribution where one action is good

and one is bad with equal probability, Pr[( ) = ( 0)] = Pr[( ) = (0 )] = 12 for given

0    ≤ 1. Second, we assume that the outside option value  is independently and uniformly
distributed over the interval [0 1]. Finally, to reflect previous experimental evidence, we assume

that sending  when    or sending  when    may incur a lying cost . We start

the analysis with the “pure cheap talk” case of  = 0.

Let  and  be the respective probabilities that  and  recommendations are accepted,

and conjecture an equilibrium where the decision maker either follows the expert’s recommenda-

tion or takes the outside option, so the expert’s expected payoff from recommending  or  is

 or , respectively. For a pure cheap talk equilibrium, the expert cannot strictly benefit

from always sending one message or the other, so in equilibrium the payoffs must be equal,

 =  (1)

Hence a higher commission on an action must be offset by a lower probability that a recom-

mendation for the action is accepted. Given the uniform distribution of  , these probabilities

are  = Pr[[|]   ] = [|] and  = Pr[[|]   ] = [|], so the

condition is

[|] = [|] (2)

If the expert never lies, then [|] =  and [|] = , so complete honesty is only

possible if incentives and values are symmetric or if any asymmetries exactly offset each other.

But even without such a coincidence, some communication is still possible if the decision maker’s

estimates are updated based on the equilibrium probability that the expert is lying.

To see this, going forward we assume that  ≥  so the overall incentive and value

asymmetry favors . Let the expert’s communication strategy be represented by the probabilities

of a “lie” for each state,  = Pr[|  ] and  = Pr[|  ]. Conjecture that the

expert might falsely claim that  is better,  ≥ 0, but never falsely claims  is better,  = 0, so

 = [|] = Pr[  |] =
1− 

1−  + 
 =



1 + 


 = [|] = Pr[  |] =
1− 

1− + 
 =  (3)

and also [|] = (1+) and [|] = 0. As  rises, [|] falls, so an equilibrium

is possible where the decision maker suspiciously discounts a recommendation for the favored
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action enough that (2) holds. Substituting from (3), in this equilibrium the expert lies in favor of

 and  with respective probabilities

 =



− 1,  = 0 (4)

Existence of the equilibrium requires  ∈ [0 1], which from (4) holds if and only if  ∈
[1 2]. It also requires that, as assumed above, the decision maker prefers the recommended action

to the other action, [|] ≥ [|] and [|] ≥ [|]. Substituting  and 

from (4), these reduce to  ≤ (+ ) and to  ≥ 0, which holds by assumption. Combining
the conditions, the overall incentive and value asymmetry cannot be too large:

1 ≤ 


≤ min{2 + 


} (5)

We use this symmetry restriction, which is necessitated by our simplifying assumption that there

are only two states,9 in our experimental parameterizations.

Proposition 1 (Pure Cheap Talk) For incentives and values satisfying (5), there exists a pure

cheap talk equilibrium with acceptance and lying rates given by (3) and (4).

Turning now to lying aversion, we assume that the expert knows his own lying cost , which

is the same for lying in either direction, but the decision maker only knows that  has a common-

knowledge distribution  with no mass points and support on [0 ] for some   0. Since experts

have heterogeneous lying costs, any lying must come from experts with lower lying costs, so we

are now interested in the pure strategies of expert types with different lying costs.

If each message offers the same monetary payoff, no lying occurs, and if one message offers a

higher monetary payoff, then lying must be in that direction only, so  = 0 or  = 0. Continuing

to focus on the case where (5) holds, conjecture an equilibrium where  ≥ 0 and  = 0. Letting

 be the lying cost of the marginal expert type who is just indifferent between lying in favor of

 or not, the equilibrium condition is

 −  =  (6)

where  and  are still given by the expected values of each recommended action. Substituting

 and  into (6) and noting that  () is the quantile function −1(), in equilibrium

 =


+ ()
− 1,  = 0 (7)

9 If the symmetry conditions are violated then communication can become more complicated or break down. In

a richer state space, comparative cheap talk of the form analyzed in this paper remains credible and influential for

arbitrary asymmetries (Chakraborty and Harbaugh, 2010; Chung, 2012).
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where  and  now represent the fraction of expert types with a pure strategy of lying toward 

and  respectively.

Since  is continuous and strictly increasing in  so is , implying that there exists a unique

 that solves (7). The only alternative equilibrium possibility has  = 0 and   0, but this

requires   . Hence the equilibrium is unique.

Proposition 2 (Cheap Talk with Lying Aversion) For incentives and values satisfying (5),

the unique equilibrium with lying aversion has acceptance and lying rates given by (3) and (7).

Lying aversion has the qualitative effect of selecting the simple type of cheap talk equilibrium

analyzed in Proposition 1, and the quantitative effect of reducing the amount of lying. The

strength of lying aversion can be represented by stochastic dominance of different  distributions.

As lying aversion increases, the marginal type () that satisfies the equilibrium condition (6)

becomes larger, lying decreases, and  increases accordingly. For instance, if  is uniform on

[0 ], then () = , so the equilibrium lying rate  is decreasing in  from (7). Conversely,

if lying aversion is very weak, e.g.,  is sufficiently small, then lying and acceptance rates are

arbitrarily close to the pure cheap talk case. We will take  as given and test comparative static

predictions for changes in the expert’s incentives and the decision maker’s values.

3 Testable Implications

We now derive testable comparative static predictions for how expert incentives and decision

maker values affect behavior. We use Proposition 1 to provide intuitive proofs for the special case

of pure cheap talk, and in the Appendix we use Proposition 2 to show that the same testable

implications extend to the general case that allows for lying aversion. Because individuals vary in

the strength of lying aversion, the model does not make point predictions but only comparative

static predictions. In this section, we also extend the model to allow for uncertainty over sender

preferences, and state the results in Proposition 3.

3.1 Symmetric Baseline

To provide a baseline for testing the effects of asymmetries, suppose  =  =  and  =  = 

for some   0 and  ∈ (0 1]. From (4) there is a cheap talk equilibrium without lying,  =  = 0,

so the recommended action is definitely better. In this equilibrium, the expected value of either

recommended action is , so the decision maker follows the recommendation if the value of the

outside option  is lower than . Therefore, the decision maker takes the recommended action

with probability Pr[ ≤ ] = . Without a recommendation, the expected value of either action

is 2, so the decision maker will take one of these actions rather than the outside option with
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probability Pr[ ≤ 2] = 2. Thus, a cheap talk recommendation doubles the probability that

one of the two actions is accepted and thereby doubles the expert’s expected payoff. As shown in

the Appendix, if payoffs and/or values are higher for one action than the other, communication

is still persuasive as long as (5) is satisfied.10

In the Symmetric Baseline (SB) treatment of the experiment, we set  =  = 8 and

 =  = 1, so the expert receives 8 if either  or  is chosen regardless of which is actually better,

while the decision maker receives 1 from choosing the better action and 0 from choosing the worse

action. In this symmetric case, there is a one-to-one relation between the acceptance probability

and the expert’s payoffs, so we test whether the probability that the expert’s recommendation for

 or  is accepted after communication, , is higher than the theoretical probability that 

or  is chosen without communication.11

Persuasiveness Hypothesis: Communication increases the probability that the decision maker

chooses  or  rather than the outside option,   12, thereby benefiting the expert.

To see how communication is persuasive in this case and more generally, Figure 1(a) shows

the expert’s preferences over decision maker estimates of  and  in [0 1]2. The figure can

capture any prior distribution of ( ), and shows the case where the prior distribution is

evenly distributed on the points (1 0) and (0 1) as in the SB treatment.12 Given any such points,

the decision maker’s estimates must be a convex combination of them, and hence on a line between

them. Above the dashed line, []  [], so the decision maker chooses  with probability

 = [] and the expert earns an expected payoff of [], as represented by the expert’s

isopayoff curves. Similarly, below the dashed line, the expert earns [].

If the decision maker believes that a recommendation for  or  is always honest, the posterior

estimates are [( ) |] = (1 0) and [( ) |] = (0 1). Since  =  in this

treatment, these estimates for each message are on the same isopayoff curve so there is no incentive

to lie and hence such beliefs are part of an equilibrium, as confirmed by equation (4) where  =

 = 0. Moreover this isopayoff curve is higher than that through the prior [( )] = (5 5),

so the expert benefits from either recommendation relative to no communication.

10 In a logit discrete choice model, Chung (2012) finds that expert preferences are always quasiconvex or qua-

siconcave, and switch to the latter for sufficient asymmetry, implying that any communication makes the expert

worse off (Chakraborty and Harbaugh, 2010).
11 If decision makers are risk-averse, or are competitive and want to hurt the expert, the theoretical acceptance

probability will be lower than 12, which biases this test against supporting our hypothesis. However, the opposite

holds if they are risk-seeking or altruistic.
12See Figure 2(a) in Chakraborty and Harbaugh (2010) for the corresponding case where the distribution of 

has full support on [0 1]2.
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Figure 1: Incentives, Values, and Equilibrium Estimates

3.2 Asymmetric Incentives

When the expert has a financial incentive to recommend one choice, the decision maker should be

suspicious of and hence less likely to follow a recommendation for that choice. Such discounting

then reduces the gains from lying, so in equilibrium only a fraction of experts lie. We are interested

in how this equilibrium interaction between discounting by the decision maker and the probability

of lying by the expert changes as incentives change.

Since  is favored overall,  ≥ , an increase in  raises the asymmetry in favor of 

and hence raises the probability  of lying in favor of  from (4), which implies a lower probability

 = (1+) that a recommendation for  is accepted. Similarly, a decrease in  leads to an
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increase in  and a fall in . In each case the probability of a lie in favor of  remains at  = 0,

and the probability of accepting a  recommendation remains at  = .

In our experiment, we test this discounting hypothesis in the Asymmetric Incentives (AI)

treatment by setting  = 1 and  = 5 while keeping  =  = 1 as in the SB treatment.

With this increase in  and decrease in  relative to the SB treatment, we predict more lying

toward  than  in the AI treatment itself,    , and more lying toward  than in the SB

treatment,   . The chance that the expert follows the expert’s  recommendation, 
 ,

is predicted to fall accordingly.

Discounting Hypothesis: A higher expert incentive for A or lower expert incentive for B in-

creases the probability of a lie that A is better,    and   , resulting in a lower

probability that a recommendation for A is accepted, 
  

 and 
  

 .

Figure 1(b) shows this AI treatment, in which the greater incentive to recommend  implies

that the isopayoff curves are discontinuous at the dashed line. The expert has an incentive to lie

in favor of  if [|] = [|], but as the lying rate  increases [|] = 1(1 + )

falls, and [( ) |] moves toward the prior (5 5). If  ≤ 2, then for some  ∈ [0 1]
the estimates reach the same isopayoff curve as that of [( ) |], so the incentive to lie is

balanced out by the skepticism of the decision maker. Since  = 2 in the treatment, [|]

would fall all the way to the prior without lying aversion, but with lying aversion the payoff for

falsely claiming  is better is reduced by , so in equilibrium [|] decreases less and the

posterior [( ) |] does not reach the prior [( )]. The comparative static predictions

are unaffected by the strength of lying aversion.

3.3 Asymmetric Values

Che, Dessein and Kartik (2013) show how an expert often has an incentive to “pander” by

recommending an action that the decision maker is already leaning toward, with a resulting loss

in credibility that hurts both sides. To capture a simplified version of pandering, we consider the

case where the incentives are symmetric but the distribution is asymmetric with   , e.g., a

consumer is known to favor the design of product .13

Pushing  can benefit the expert more, but is more suspicious to the decision maker, which

reduces the expert’s incentive to push . As seen from (4), an increase in  or a decrease in 

strictly increases  and has no effect on  = 0. From (3), an increase in  has a positive direct

effect on  that is partially counteracted by the lower credibility from the rise in ,14 but no

13Che, Dessein and Kartik (2013) analyze a strong version of pandering where the expert strictly rather than

weakly prefers that the decision maker choose the better of the two actions.
14For the limiting pure cheap talk case in the sufficiently symmetric parameter range, substituting in (4) yields

 = 


and the effects cancel out.
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effect on . For a decrease in , the effect on  via  is negative and the direct effect on  is

also negative, so both acceptance rates fall.

In the Asymmetric Values (AV) treatment, we set  = 1 and  = 5 and keep  =  = 8

as in the SB treatment. The decrease in  relative to the SB treatment should induce more lying

toward  and a fall in acceptance rates.

Pandering Hypothesis: A higher relative decision-maker value for A increases the probability

of a lie that A is better,    and   , and a lower-decision maker value for B

decreases the probability that a recommendation for either action is accepted, 
  

 and


  

 .

Figure 1(c) shows this AV treatment, in which the prior is evenly distributed on (1 0) and

(0 5). If the decision maker took recommendations literally so [( ) |] = (1 0) and

[( ) |] = (0 5), the expert would always lie toward  as seen from the isopayoff curves.

As the lying rate  increases, the decision maker discounts the recommendation and [|] =

1(1+) falls as [( ) |] approaches the prior. If the asymmetry in values is not too great,

 ≤ 2, this discounting reduces the incentive to lie sufficiently for [( ) |] to rest on the

same isopayoff curve as [( ) |] = , at which point the incentive to lie is eliminated.

Since  = 2 in the treatment, in a pure cheap talk equilibrium an  recommendation is fully

discounted, [( ) |] = [( )]. Any lying aversion induces an equilibrium with less

discounting, but with the same comparative static predictions.15

3.4 Extension — Opaque Incentives

Often a decision maker is uncertain whether the expert is biased or not, such as a customer

who does not know whether a salesperson benefits more from selling one brand or another. To

allows for this we now extend the model to assume the expert is biased toward  with probability

 ∈ (0 1) so   , and is otherwise unbiased so  =  =  for some   0.16 The

decision maker knows the probability  that the expert might be biased toward . To focus on

the incentive issue and simplify the analysis, suppose  =  =  for some  ∈ (0 1].
15We do not test the interesting case of offsetting incentive and value asymmetries. From (4) and as seen in

Figures 1(b) and 1(c), the incentive to lie is eliminated if  = 2 and 2 = . Such countervailing incentives

with the strong version of pandering are analyzed by Che, Dessein, and Kartik (2013, Online Appendix) and Chiba

and Leong (2015). We also do not consider the case where the expert is uncertain over the decision maker’s values,

which directly mitigates the loss from pandering in this environment, and can allow for communication in other

environments even with extreme biases (Chakraborty and Harbaugh, 2014).
16The closest analysis of incentive uncertainty is in Chakraborty and Harbaugh (2010, Online Appendix). We

focus on the case where one expert type is unbiased, but the same analysis applies if both types are biased toward

one of the actions with different strengths or they are each biased toward different actions. There may also be a

range of possible expert biases, which can further undermine communication (Diehl and Kuzmics, 2018).
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For the expert type that is biased toward , recommending  is less suspicious than it would

be if the bias were known, so the incentive to lie is strengthened. For the unbiased expert who has

equal incentives to recommend  or , the decision maker’s suspicion of an  recommendation

creates an incentive to recommend  even when  is actually better. When uncertainty is at

the maximum,  = 12, such lying by both types leaves the decision maker with no information

unless there is some lying aversion. Letting subscripts  and  denote lying rates by biased and

unbiased types, respectively, we have the following result. The proof is in the Appendix.

Proposition 3 (Opaque Incentives) For symmetric values, (i) if   12, there exists an

informative pure cheap talk equilibrium with  = 1,  = 0,  = 0,  ∈ (0 1); (ii) if  = 12,
there exists an uninformative pure cheap talk equilibrium with  = 1,  = 0,  = 0,  = 1,

and an informative pure cheap talk equilibrium does not exist; (iii) if   12 and  is

sufficiently close to 1, there exists an informative pure cheap talk equilibrium with  ∈ (0 1),
 = 0,  = 0,  = 1; and (iv) in any equilibrium with lying costs,   0,  = 0,  = 0,

  0.

The Opaque Incentives (OI) treatment tests the maximum uncertainty case of  = 12 where

each expert is equally likely to be assigned the unbiased incentives in the SB treatment or the

biased incentives in the AI treatment. We predict more lying by biased types toward  than in

the AI treatment, and expect lying by unbiased types toward  where none was predicted in the

AI and SB treatments. Regarding acceptance rates, since we predict lying in favor of both  and

 in the OI treatment, and no lying in the SB treatment, lack of transparency is predicted to

reduce acceptance rates for  and  recommendations relative to the SB treatment. Since there

is lying in favor of  but not  in the AI treatment, the acceptance rate for  is expected to

be lower than in the AI treatment. The effect on the acceptance rate for  relative to the AI

treatment is ambiguous since the credibility of an  recommendation is enhanced by the presence

of unbiased experts who do not lie in favor of , but undermined by biased experts’ stronger

incentive to lie in favor of .

Noting that the main insight of this model is similar to that of the political correctness theory

of Morris (2001), we have the following hypothesis, which is proven in the Appendix.

Political Correctness Hypothesis: For symmetric values, if  = 12 so the expert is equally

likely to be biased toward  or unbiased, then (i) biased and unbiased experts lie in opposite

directions,    and    , and are more likely to lie than if the expert is known to be

biased or known to be unbiased,    , and    ,, and (ii) the probability that

a recommendation for either A or B is accepted is lower than if the expert is known to be unbiased,


  

 and 
  

 , and the probability that a recommendation for B is accepted is lower

than if the expert is known to be biased, 
  

 .
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Figure 1(d) shows the OI treatment for this most unfavorable case where  = 12. To see how

communication with pure cheap talk unravels as lying encourages more lying, suppose a biased

expert type always lies toward , and an unbiased type never lies. An  recommendation is then

a weighted average of ( ) = (1 0) from the unbiased types who recommend  half the time,

and ( ) = (12 12) from the biased types who always recommend , so [( ) |] =

(23 13). Since a  recommendation is always from an unbiased type, [( ) |] = (0 1).

Hence  = [|] = 1  23 = [|] = , so unbiased types have an incentive

to lie toward . If they lie half the time toward  then the recommendation is discounted to

[( ) |] = (13 23), which would set  = . However  = [|] now falls

further since only a quarter of  recommendations come from unbiased rather than biased types,

which gives even more incentive for unbiased types to lie toward , etc.17 Only when both types

always lie and [( ) |] reaches the prior is the unbiased type made indifferent; at that

point, the decision maker learns nothing. Allowing for some lying aversion reduces equilibrium

lying in both directions, but the comparative static predictions for lying rates and acceptance

probabilities are the same.

4 Experiment

4.1 Experimental Design

Following the exact model introduced in Section 2, we conduct an experiment using the parameter

values for the different treatments in Section 3. In each treatment, a “consultant” (expert) has

two projects,  and , one of which is better for the “client” (decision maker). The probability

that either project is the better one is 12 independently in each round. The client has an

alternative project  with a value that is drawn from a uniform distribution independently in

each round. The consultant knows the realized values of projects  and  and the client knows

the realized value of the alternative project . After learning the realized values of projects 

and , the consultant sends one of two messages to the client: either “I recommend Project A”

or “I recommend Project B”. The client learns the realized value of the alternative project  and

sees the client’s message. The client then chooses project , , or  and the decision and the

outcome are displayed to both players.

We conduct four sessions with 20 subjects each, all drawn from undergraduate classes at

Indiana University’s Kelley School of Business in 2011. We follow a within-subject design in

17With lying costs, more lying by unbiased types also encourages more lying by biased types since  falls faster

than . As shown in the proof of the political correctness hypothesis, lying by each type is a strategic complement

to lying by the other type.
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which the same subjects are exposed to all four treatments in the sequence SB-AI-OI-AV.18

This sequence minimizes the potential for confounding treatment effects with learning effects or

experimenter-demand effects, since from each treatment to the next subjects do not have an

incentive to either just follow their previous behavior or just switch to the opposite behavior. In

the first treatment (SB), experts have no incentive to lie; in the second treatment (AI), experts

have an incentive to lie if  is better; in the third treatment (OI), an expert is equally likely to be

biased, with an incentive to lie if  is better, or unbiased, with an incentive to lie if  is better;

in the final treatment (AV), all experts have an incentive to lie if  is better. However, learning

effects may still confound some predictions as discussed below.

The experiments are conducted on computer terminals at the university’s Interdisciplinary

Experimental Lab using z-Tree software (Fischbacher, 2007). In each session, the subjects are

randomly assigned to play the role of one of 10 consultants or 10 clients. Each of the four

treatments (or “series” as they are described to subjects) in a session lasts 10 rounds; over these

rounds, every client is matched anonymously with every consultant once and only once. At the

end of the experiment, one round from each treatment is randomly chosen as the round that

the subjects are paid for to reduce earnings effects. Subjects privately learn which rounds were

chosen and privately receive cash payments. No record of their actions mapped to their identity

is maintained. The monetary payoffs are 10 times larger in US dollar terms than indicated in

Figure 1, but there is a 1 in 10 chance of each round being chosen, so the expected values for

each round are the same. The average earnings in the 90-minute experiment are, excluding a

$5 show-up payment, $22.02 for consultants and $27.78 for clients. The detailed procedures and

verbal instructions are in Appendix B. Sample screenshots are in Appendix C.

4.2 Results and Analysis

In each of the four identical sessions there are four treatments, each with ten rounds. Since

there are 20 subjects in a session, each round has 10 pairs of recommendations and decisions. To

allow for some learning, we base the statistical analysis on behavior in the last 5 rounds of each

treatment.19 In these rounds there are 50 recommendations and 50 decisions in each session for

each treatment, but these data points are not independent since players make multiple decisions

18Given the complexity of the OI treatment, an alternative between-subject design would require either a large

number of rounds, in which case reputation effects would be hard to eliminate, or some practice rounds with and

without expert bias for the subjects to better understand the game. The within-subject design keeps track of

behavior from such “practice rounds” in the simpler SB and AI treatments and allows it to be compared with

behavior in the more complicated OI and AV treatments.
19The significance results are qualitatively the same if we base the tests on behavior frequencies over all 10

rounds, with one exception, which is discussed in Footnote 23. Due to a coding error, data for the first round of

the Asymmetric Values Treatment was not recorded, so only 9 rounds of data are available for this treatment.
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and learn from interactions with other players. To allow for such interdependence, our statistical

analysis follows the most conservative approach of analyzing behavior at the session level rather

than the subject or subject-round level. In particular, we treat the frequency of a behavior in

the last five rounds of a treatment for each session as the unit of analysis, and use paired tests

to reflect the within-subject design. Since there are only four independent data points for a

treatment, one for each session, statistical significance requires consistent differences in behavior

frequencies across treatments within each of the four sessions. These frequencies are reported in

Table 1. We do not formally model learning; however, for comparison, Figures 2 and 3 indicate

frequencies for the first five rounds using dashed gray lines and frequencies for the last five rounds

using solid gray lines. We limit our discussion of learning to cases involving large or unexpected

differences between the first five and last five rounds.

For the SB treatment, the incentives and payoffs are symmetric, so the Persuasiveness Hypoth-

esis implies that decision makers are less likely to choose  than if there were no communication.

Since we treat the data generating process as being at the session level for each treatment, we

are interested in whether the overall rate of acceptance for  and  is significantly above 12.

Consistent with the prediction, from Table 1 we see that this frequency , which is a weighted

average of 
 and 

 , is above 12 in each session.20 For any possible distribution, the prob-

ability that this would occur if the hypothesis were false is lower than (12)4 = 116, which is

the -value for the one-sided Wilcoxon signed rank test, as seen in Table 2. The one-sided -test

(which, in contrast to the subsequent tests, is a one sample test and thus not paired) indicates

the difference is significant at the 5% confidence level. We report -test results for completeness,

though clearly the normality assumption is not valid in our context.

Figure 2(a) shows the overall acceptance rates, and Figure 3(a) shows that a decision maker is

less likely to follow an expert’s recommendation as the outside option becomes more attractive. For

comparison with the other treatments, the “Expert Lies” bar in Figure 2(a) shows the frequency

at which experts recommend  when  is the better option () and the frequency at which

experts recommends  when  is the better option ().

20Lower acceptance rates in the first two sessions may reflect the effects of one expert in each session who

repeatedly lies for no material benefit, as discussed in Section 4.3. Consistent with such unexpected lying affecting

subsequent decision-maker behavior, acceptance rates in the first five rounds of Sessions 1 and 2 are close to those

of Sessions 3 and 4, but diverge in the last five rounds. Our use of session-level data prevents correlated error terms

for subjects within a session from biasing inference.
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Var. Ses. 1 Ses. 2 Ses. 3 Ses. 4 Overall

Symmetric Baseline Treatment

Recommend  When  Better  14 13 11 07 11

Recommend  When  Better  14 15 04 04 10

 Recommendation Accepted 
 63 77 92 96 81

 Recommendation Accepted 
 39 71 88 100 76

 or  Recommendation Accepted  52 74 90 98 79

Asymmetric Incentives Treatment

Recommend  When  Better  35 31 52 53 41

Recommend  When  Better  21 24 04 06 13

 Recommendation Accepted 
 36 32 53 53 45

 Recommendation Accepted 
 68 80 71 100 77

Opaque Incentives Treatment

Biased: Recommend  When  Better  45 45 58 78 56

Biased: Recommend  When  Better  36 07 00 31 19

Unbiased: Recommend  When  Better  33 15 00 00 13

Unbiased: Recommend  When  Better  38 58 58 50 51

 Recommendation Accepted 
 58 28 68 54 52

 Recommendation Accepted 
 54 64 80 92 72

Asymmetric Values Treatment

Recommend  When  Better  46 68 63 70 62

Recommend  When  Better  00 05 00 09 03

 Recommendation Accepted 
 46 40 68 75 58

 Recommendation Accepted 
 62 30 44 40 45

Table 1: Lying and Acceptance Frequencies in Rounds 6-10 of Each Treatment

In the AI treatment where action  is more incentivized, the Discounting Hypothesis states

that decision makers are less likely to accept a recommendation for  since experts often lie in

favor of . Consistent with the predictions for false claim rates in this hypothesis, we see in Table

1 and Figure 2(b) that experts falsely claim  to be better 41% of the time and falsely claim 

to be better 13% of the time. From Table 1, we see that false claims are higher for  than 

(  ) in each session of the treatment, which would occur with probability (12)4 = 116

in any distribution if the hypothesis were false, as seen in Table 2. We also see that false claims

in favor of  are always higher than in the SB treatment (  ), which again implies a -

value of 116. Using a paired one-sided -test, both of these false claim differences are statistically

significant at the 5% level or better. Going forward, we will refer to a difference as significant if
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Figure 2: Lying and Acceptance Frequencies

the -value for the Wilcoxon signed rank test reaches this lowest attainable level of  = 116 and

the paired one-sided -test also indicates significance at the 5% level or better.

Regarding acceptance rates in the AI treatment, as seen in Table 1 and Figure 2(b), decision

makers accept the recommendation 45% of the time when  is recommended and 77% of the time

when  is recommended. From Table 1, we see that acceptance rates in the treatment are lower

for  than for  in each session (
  

 ). Also, acceptance rates for  are lower in the AI

treatment than in the SB treatment (
  

 ). As seen in Table 2, both of these differences

are significant. Based on Figure 3(b), decision makers are unlikely to accept  recommendations

when the outside option  is favorable.

In the OI treatment, from the Political Correctness Hypothesis we expect that a biased expert

type is more likely to falsely claim  is better and, of particular interest, an unbiased expert type

is more likely to falsely claim  is better. Consistent with the prediction, the summary data in

Table 1 and Figure 2(c) show that biased experts falsely claim  is better 56% of the time and

falsely claim  is better 19% of the time, while unbiased experts falsely claim  is better 13% of

the time and falsely claim  is better 51% of the time. Notice from the dashed gray line in Figure
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Figure 3: Acceptance Frequencies by Value of Outside Option

2(c) that unbiased experts do not immediately appear to recognize the benefits of lying toward

, but learn strongly over the course of the experiment. From Table 2, both of the false claim

differences for the last five rounds are significant (   and    ). If we compare this

behavior with that in the SB treatment, we find that in each session in the OI treatment biased

experts are more likely to falsely claim  is better and unbiased experts are more likely to falsely

claim  is better (   and   ), and both differences are significant. Comparing

this behavior with that in the AI treatment, we find that biased experts are more likely to falsely

claim  is better and unbiased types are more likely to falsely claim  is better (   and

  ), and that the differences are significant. However, note that biased experts in the OI

treatment may be continuing behavior that they learned in the AI treatment, so this higher rate

of lying might reflect learning instead.21

For acceptance rates in the OI treatment, the results are more mixed. Theory predicts that

decision makers should be more suspicious of an  recommendation than in the SB treatment

(
  

 ) and the differences are significant. Theory also predicts that decision makers should

21Arguing for a learning interpretation, the extra incentive to lie in the Opaque Incentives treatment is weak for

biased experts (compared to unbiased experts, whose political correctness behavior is the focus of this treatment).

Arguing against such an interpretation, Figure 1(b-c) shows a bigger jump in lying between the treatments than

between the first and second half of each treatment.
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be more suspicious of a  recommendation than in either the SB or AI treatments (
  



and 
  

 ), though neither difference is significant. Hence, it seems that decision makers

are correctly suspicious of an  recommendation, and that unbiased experts correctly anticipate

this and falsely claim that  is better, but it does not appear that decision makers fully anticipate

such lying by unbiased experts.22 However, the power of our test is limited by the small sample

size, so even if decision makers did fully anticipate lying toward , it might not be significant

in our test. From the gray dashed line in Figure 2(c), decision makers do not appear to become

more suspicious of  recommendations over the course of the experiment, but rather are more

likely to accept  recommendations in later rounds.23 This pattern also appears in Figure 3(c),

where decision makers with a favorable outside option become less rather than more suspicious of

 recommendations over time. We did not use a role-reversal mechanism to speed up learning, so

ten rounds might have provided insufficient opportunity for decision makers to successfully learn

their optimal responses.

Finally, in the AV treatment, the Pandering Hypothesis states that experts are more likely

to falsely claim that  is better than to falsely claim that  is better (   ). Consistent

with this prediction, Table 1 and Figure 2(d) show false claim rates for  and  of 62% and

3%, respectively. The difference between these rates is statistically significant (see Table 2).

Comparing the frequency of false claims for  in this treatment with that in the SB treatment

(11%), the difference is also significant (  ). Note that subjects who were assigned to be

unbiased in the OI treatment were more likely to lie (toward ) in the subsequent AV treatment.

After eventually recognizing that the indirect benefit from lying toward  in the OI treatment,

these subjects may have been more likely to recognize the benefit from lying toward  in the

AV treatment.24 Regarding acceptance rates, as predicted they fall for both  and  in the AV

treatment relative to the SB treatment (
  

 and 
  

 ), but only the former

decline is significant. Moreover, as seen from Figure 2(d) and Figure 3(d), decision makers take

some time to become suspicious of  recommendations.25

22Such behavior may reflect level- thinking in which subjects do not fully consider the entire chain of strategic

interactions (e.g., Stahl and Wilson, 1995; Nagel, 1995; Crawford, 2003).
23Since behavior is initially closer to the equilibrium prediction, the difference in session means for 

 and 


is significant if we include the first 5 rounds rather than restricting the analysis to the final 5 rounds.
24However the results have the same significance if we exclude this group. This pattern may also reflect an

experimenter demand effect, whereby subjects anticipate that their behavior is expected to change between sessions

and alter their behavior accordingly. However, we did not see such a reversal between the AI and OI treatments,

and the OI randomization ensures that there is no predictable pattern across treatments in the direction of lying

incentives.
25Acceptance probabilities are higher for  than . While  is never a good choice when   5,  can still be

a good choice for lower values of  if there is some chance that the expert is not lying.
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Hypothesis
Signed

rank test

Paired

-test

Persuasiveness Hypothesis

 and  Acceptance Rate: SB Treatment   12 063 032

Discounting Hypothesis

 vs. Lying Rate: AI Treatment    063 037

 Lying Rate: AI vs. SB Treatment    063 010

 vs. Acceptance Rate: AI Treatment 
  

 063 007

 Acceptance Rate: AI vs. SB Treatment 
  

 063 001

Political Correctness Hypothesis

 vs. Lying Rate: Biased OI Treatment    063 017

 vs. Lying Rate: Unbiased OI Treatment    063 022

 Lying Rate: Biased OI vs. SB Treatment    063 008

 Lying Rate: Unbiased OI vs. SB Treatment    063 004

 Lying Rate: Biased OI vs.AI Treatments    063 018

 Lying Rate: Unbiased OI vs.AI Treatment    063 008

 Acceptance Rate: OI vs. SB Treatment 
  

 063 027

 Acceptance Rate: OI vs. SB Treatment 
  

 438 372

 Acceptance Rate: OI vs.AI Treatment 
  

 188 137

Pandering Hypothesis

 vs. Lying Rate: AV Treatment    063 000

 Lying Rate: AV vs. SB Treatment    063 002

 Acceptance Rate: AV vs. SB Treatment 
  

 063 005

 Acceptance Rate: AV vs. SB Treatment 
  

 125 096

Table 2: -values for One-Sided Hypothesis Tests,  = 4

The above results are for paired tests, which typically generate lower −values for within-
subject designs since they control for subject-specific factors.26 However, in our case, the treat-

ment effects are so strong relative to any such factors that in almost every case the unpaired tests

have equal or lower −values than the paired tests. As seen in Table 1, for all but one hypothesis
about false claim rates ( vs. ), all four rates for one treatment are ranked above all four

rates for the other treatment, which is the strongest possible ranking and implies  = 014 for the

unpaired Wilcoxon (Mann-Whitney) rank order test. All of the differences in acceptance rates

also remain significant with equal or lower -values in unpaired tests, with one exception: there

26Since we treat each session with 20 subjects as one data point, subject-specific factors are largely averaged out,

but there may also be session-specific factors such as the evolution of play due to strategic interactions.

20



is still no significant tendency in the OI treatment for decision makers to appropriately discount

recommendations in the opposite direction of biased experts.

4.3 Expert Lying Aversion

The model assumes heterogeneous lying aversion, but as shown in Proposition 2, the comparative

static predictions of the model do not depend on the exact distribution of lying costs. The

experiment is not designed to estimate the distribution of lying costs since it does not include

treatments that systematically vary the incentive to lie. Figure 4 shows the lying frequencies for

the 40 different experts, 10 in each of the four sessions. The experts are ordered according to their

frequency of lying in the predicted direction, i.e., the percentage of times that the expert lies in the

direction for which there is a material incentive to lie in equilibrium. This is a weighted average

of       and  , where the weights depend on the actual number of opportunities to

lie, which vary randomly based on whether  or  was in fact the better action. To reduce noise,

data for all 10 rounds is shown.

Figure 4 shows substantial variation in how frequently experts lie in the predicted direction.

Of the 40 experts, 7 lie at least 80% of the time, 25 lie between 20% and 80% of the time, and 8 lie

less than 20% of the time or not at all. With pure cheap talk, the equilibrium and best response

is to always lie in these cases, so the pattern appears roughly consistent with our assumption

from the literature that a substantial fraction of experts are averse but not categorically opposed

to lying, and that the strength of this aversion varies. Of course, some natural variation in lying

rates should occur even by chance.27

Lying aversion in our experiment could reflect a true preference against lying, but may also

be a reduced form for other considerations, such as an altruistic concern for the payoff to the

decision maker (Hurkens and Kartik, 2009). Note that one expert in each of Sessions 1 and 2 lies

consistently in a non-predicted direction, which hurts the decision maker without benefiting the

expert materially.28 Lying frequencies in a direction for which there is no material incentive to lie

are also shown in Figure 4. These frequencies are a weighted average of        ,

and  . Such lying may confuse decision makers and lead to further effects on play in the

session, but our statistical analysis is unaffected by such interdependence between rounds since it

is based on session-level data.

An implication of heterogeneous lying aversion is that experts with lower lying costs should

benefit financially in the AI, AV, and OI treatments from taking advantage of the extra credibility

27With homogeneous lying costs, in the mixed strategy equilibrium there would be heterogeneity in realized lying

behavior, and with anonymity there could also be heterogeneity in the mixed strategy lying rate by each player.
28Such lying might reflect competitive or “nasty” preferences (Abbink and Sadrieh, 2009), or might just reflect

expert confusion about the best strategy.
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Figure 4: Overall Frequency of Lying by Each Expert

generated by experts with higher lying costs. We cannot observe lying aversion directly, but we

expect a positive correlation between lying in the predicted direction and earnings. Regressing

the observed lying rates against earnings, we find that over the three sessions, a 10% higher lying

rate implies an extra $0.40 in earnings for the expert.29

4.4 Decision Maker Best Responses

The decision maker can take a certain payoff of  from the outside option or accept the expert’s

recommendation and, depending on whether the expert lied or not, receive either zero or 10 (or

5 for action  in the AV treatment). A risk-neutral decision maker’s best response acceptance

rates from (3) are shown in the dark dashed lines in Figure 2 based on the empirical lying rates

in each treatment. Expected monetary payoffs from deviating are small near the best response

and increase in the square of the size of the deviation. Actual acceptance rates are on average 8%

below these best response rates, which may reflect risk aversion. Overall, if (risk-neutral) decision

makers best responded they would have made $30.06 on average (net of the show-up payment)

29This effect is significant at the 1% level, though the conditions for OLS are not satisfied in our environment.

We exclude rounds in which an expert lied in the opposite direction from that predicted. Similar results hold if we

exclude any experts who lied in the wrong direction from the predicted direction at least once. To reduce noise,

these calculations are for the average earnings over all rounds in a session rather than for the randomly selected

payment round only.
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Figure 5: Overall Frequency of Behavior by Each Decision Maker

but instead made $27.42 on average.30 For comparison, if they had always ignored the experts

and chosen , decision makers would have made $20 on average.31 If the experts never lied and

the decision makers always selected the best response to such honesty, decision makers would have

made $37.50 on average.32

Cases where acceptance rates diverge the most from the general pattern may reflect failure

by decision makers to properly account for expert behavior. First, in the AI treatment, the

lying rates of 41% for  and 13% for  imply from (3) that the expected value of  when it is

recommended is (1− 13)(1− 13 + 41) = 68, implying a best response acceptance rate of 68%

for . In contrast, the actual rate is only 45%. Such strong discounting of  recommendations

suggests that decision makers underestimate how much communication is possible from a biased

expert. Second, in the OI treatment, the combined lying rates for biased and unbiased experts of

33% for  and 35% for  imply from (3) that the expected value of  when it is recommended is

(1− 35)(1− 35 + 33) = 66, so the best response acceptance rate for  is 66%. However, the

actual acceptance rate is 72%. Insufficient discounting of  recommendations, especially when

30These calculations are based on the last five rounds of each treatment, in which the decision makers use the

lying rates for their own sessions to calculate  and . Actual payoffs, which allowed for an equal chance of any

round (not just the last five) being chosen in each session as the payoff round, were $27.92.
31 In the pure cheap talk equilibrium with honest recommendations in the SB treatment and lying in the other

treatments, decision makers would have made 10+750+750+675=$31.75 and experts would have made (12)8+

(12)750 + (12)775 + (12)800=$15.63.
32 In this case, experts would have received 8+ (10+5)2+ (10+ 5+ 8+8)4+ (8+82)2 = $29 25 on average

rather than $22.02, and would have suffered no utility loss from lying. Hence, as is common in cheap talk games,

lack of trust hurts both the sender and receiver.
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risk aversion appears to induce excess discounting in every other situation, is consistent with the

inference from Table 1 and from the learning patterns in Figures 2(c) and 3(c) that some decision

makers may not recognize how opaque incentives give even unbiased experts an incentive to lie.

However, as discussed above, more data would be required to draw any firm conclusions.

Figure 5 orders the 10 decision makers in each session according to their best response rates

over all four treatments, using data for all 10 rounds to reduce noise. Ignoring a recommendation

even when it offers the highest expected value among the three choices is categorized as “suspi-

cious” (or risk-averse), and following a recommendation even when it does not offer the highest

expected value is categorized as “naive” (or risk-loving). The observed variation in behavior might

reflect actual preference differences or different experiences as the participants figure out the game

and learn about unobservables such as the distribution of expert lying aversion. To see whether

such learning is a factor, we look at all rounds where a decision maker accepted a recommendation

and compare their behavior in the next round after being lied to or told the truth in the previous

round. We find that after being lied to, the “naive” action frequency decreases to 10% from 6%,

and the “suspicious” action frequency increases from 8% to 15%.33

5 Conclusion

This paper combines insights from the literature on cheap talk recommendations into a simple,

easily testable model. These insights were originally developed under varying assumptions, but

they are sufficiently general that their main implications continue to hold. The model shows

how recommendations can be persuasive even when the expert always wants the decision maker

to take an action rather than no action, how limited asymmetries in incentives and values can

distort communication but need not preclude it, and how lack of transparency about the expert’s

incentives can lead even an expert with unbiased incentives to offer a biased recommendation.

When experts are lying averse, there is a unique equilibrium with testable comparative static

predictions that do not depend on the exact distribution of lying costs.

In the first experimental tests of these predictions from the literature, we find that for every

hypothesis regarding expert behavior we can reject the null hypothesis of no change in the hy-

pothesized direction. The false claim rates by experts change as predicted overall and in every

session. Of particular interest is that when incentives are opaque we find that biased experts are

more likely to lie, and that unbiased experts appear to recognize that they are more persuasive

if they sometimes lie in order to avoid the recommendation favored by a biased expert. For the

hypotheses regarding decision maker behavior, the acceptance rates also change as predicted and

33However these effects are quite noisy due in part to variation in  and there is no significant pattern across

session averages.
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the changes are also statistically significant except for the Opaque Incentives treatment. Within

the limited sample in the experiment, decision makers do not consistently discount the recom-

mendation that is the opposite of that favored by the biased expert. Whether this represents a

general failure of decision makers to understand how lack of transparency warps the incentives of

even unbiased experts, or whether it is just a small sample artifact of our experiment, is an open

question.

Since biased incentives make communication less reliable, and lack of transparency further

undermines communication, these results provide theoretical and empirical support for policy

measures that try to eliminate biases or at least make them more transparent. However, there are

two important caveats. First, as shown by Inderst and Ottaviani (2012), disclosure requirements

can lead to endogenous changes in incentives that affect the equilibrium of the subsequent com-

munication game, and there may also be other endogenous changes in the payoff or information

structure in response to disclosure requirements or other measures. Second, as seen from the

theoretical results by Che, Dessein and Kartik (2013) that our experiment supports, an expert

will often inefficiently pander to the decision maker even when the problems of biased incentives

and lack of transparency are both solved.
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6 Appendix A — Proofs

Proof of Persuasiveness Hypothesis: Since (5) holds by assumption the equilibrium is given

by (3) and (7). Half the time  is better, in which case there is no lying, and half the time 

is better, in which case there is lying toward  with probability , so the probability that  is

taken is 1
2
+

1
2
 = 2 and the probability that  is taken is 1

2
(1−) = 1

2
(1−). Hence

the overall probability that  or  is taken is  = (+ − )2. From (7),  is strictly smaller

with lying costs than with pure cheap talk, so substituting from (4),

 
+ − (− 1)

2
 (8)

Note that ( +  − ( − 1))2 − 2 = (2 − )(2) ≥ 0 where the inequality
follows from the recommendation condition in (5), so   2. Also note that (+−(−
1))2− 2 = (− + ) (2) ≥ 0 where the inequality follows from the acceptance

condition in (5), so   2.

Without communication, the decision maker will either take the outside option  or take the

action  or  offering the highest expected payoff where [] = 2 and [] = 2. So

without communication  = max{2 2}, which is lower than with communication.
Regarding expert payoffs, with communication from (7) if  is better then expert types with a

lying cost lower than  lie and receive a higher payoff than , while expert types with a lying

cost above  tell the truth and receive . If  is better the expert receives . So, since

   by assumption, the lowest payoff for any expert type is . Without communication

the expert receives max{2 2} = 2, so communication benefits every expert type

weakly and some types strictly if  ≥ 2, as required by (5). ¥
Proof of Discounting Hypothesis: Totally differentiating (7),  = ( +  +

0)  0 and  = −(++0)  0 where the derivative 
0
 exists and is strictly

positive by the assumption that  has full support with no mass points. So an increase in  or

decrease in  implies there is strictly more lying and hence from (3) that  is strictly lower. ¥
Proof of Pandering Hypothesis: Totally differentiating (7),  = ( +  +

0)  0 and  = −(+  + 0)  0 so an increase in  or decrease in  implies

there is strictly more lying toward . For an increase in  this implies from (3) that, in addition

to the direct positive effect on , there is an indirect negative effect from the rise in . The

direct effect must strictly dominate since from (6)  only increases if  increases. For a decrease

in  there is the strictly negative direct effect on , and a strictly negative indirect effect on 

from the rise in . ¥
Proof of Proposition 3 (Opaque Incentives): Using the assumption that  =  =   0,
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the expected value of the recommended actions are

[|] = Pr[  |] =
 (1− ) + (1− ) (1− )

 (1− ) + (1− )(1− ) +  + (1− )
 (9)

[|] = Pr[  |] =
 (1− ) + (1− )(1− )

 (1− ) + (1− )(1− ) +  + (1− )
 (10)

and the expected values of the unrecommended actions are [|] = (1− Pr[  |])

and [|] = (1− Pr[  |]).

(i) For   12 suppose  = 1,  = 0,  = 0,   1, so the biased expert has a

strict incentive to lie toward , but the unbiased expert is made indifferent to lying toward .

Note that [|]  [|] and [|]  [|] so the acceptance probabilities are

 = [|] and  = [|]. So  =  and    if there exists a

  1 such that  = , or substituting,

 + (1− ) (1− )

2 + (1− )(1− )
=

1

1 + 
 (11)

Solving,  = (1− ) so the equilibrium exists.

(ii) In the candidate uninformative equilibrium  = 0  = 1 and  = 1  = 0, implying

[|] = [|] and [|] = [|]. For    the decision maker is indifferent

between following the recommendation or taking the other action, so suppose they follow it. The

unbiased type is indifferent between messages so loses nothing from always reporting , while

the biased type strictly prefers sending . So the equilibrium exists.

Informative cheap talk requires Pr[]Pr[]  0 and [( ) |] 6= [( ) |].

By the law of iterated expectations, it cannot be that [|]  [|] or [|] 

[|] for all , or that [|] 6= [|] and [| ] = [| ] for any  , which

leaves two possibilities.

Suppose [|]  [|] and [|]  [|]. First, suppose in equilibrium

 =  so   , which implies  = 1, = 0. Then from (9) and (10),

 =  requires for  = 12 either  = 0  = 1 or  = 1  = 0. The former implies

[|] = [|] and [|] = [|], a contradiction, and the latter implies only

 is sent. Second, suppose in equilibrium  =  so   , which implies

 = 1 and  = 0. Then from (9) and (10),  =  requires for  = 12 that  = 0

and  = 1, which implies [|] = [|] and [|] = [|], a contradiction.

Finally, suppose in equilibrium neither  =  nor  = . Then both types will

send either the same message or opposing messages. In the former case one message is never sent

and in the latter case [|] = [|].

Suppose [|]  [|] and [|]  [|]. Then messages imply the oppo-

site of their literal meanings but otherwise the above analysis is the same.
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(iii) For   12 suppose   1,  = 0,  = 0,  = 1 so instead the biased expert

is made indifferent, while the unbiased expert has a strict incentive to lie. Again [|] 

[|] and [|]  [|], so the acceptance probabilities are  = [|] and

 = [|]. The equilibrium exists if, letting  = , there is an   1 such that

[|] = [|] or


1 + 
=

 (1− ) + (1− )

 (1− ) + 2(1− )
 (12)

For any given  ∈ (12 1) consider the implicit function () that solves (12). For  = 1,

note  (1) = (1 − ) and  = 1 (2 − 1) so the function exists and is continuous in a
neighborhood of  = 1. Hence for   1 sufficiently close to 1 there is an  ∈ (0 1) that solves
(12), so the equilibrium exists.

(iv) For each of the two actions, each of the two expert types can sometimes lie toward the

action or never lie, so there are 16 cases. By elimination we want to show that only   0,

 = 0,  = 0,   0 is possible in equilibrium.

If   0 the biased types are lying toward  so it must be that    and if   0

it must be that   , so any case with both    0 is not possible. Similarly any

case with    0 is not possible.

If  =  = 0 then it must be that  ≤  and  ≤ . From (9), Pr[ 

|] = 1 and Pr[  |] = 1(1+ +(1− ))  12, so [|]  [|] and

[|]  [|] and the acceptance probabilities are  =  and  = (1 +  + (1−
)). This implies  ≥ , a contradiction with  ≤  since   , so any case

with  =  = 0 is not possible.

If  =  = 0 then it must be that  ≥  and  ≥ . From (10), Pr[ 

|] = 1(1 +  + (1 − )) and Pr[  |] = , so [|]  [|] and

[|]  [|] and the acceptance probabilities are  = (1 +  + (1 − )) and

 = . This implies   , a contradiction with  ≥  since   0, so any case

with  =  = 0 is not possible.

Therefore we are left with two cases,  = 0   0   0  = 0 and   0  = 0  =

0   0, both of which imply [|]  [|] and [|]  [|] so again

 = [|] and  = [|]. The former case implies that the financial benefit is higher

for biased types to recommend  and for unbiased types to recommend ,    and

  , which cannot both hold for   , so only the latter case is possible. ¥
Proof of Political Correctness Hypothesis: From Proposition 3(iv) we know that

  0  = 0  = 0   0 so the equilibrium indifference conditions are

 −  =  for    (13)

 =  −  for    (14)

28



for the biased and unbiased types respectively where  = −1() and  = −1().

Regarding existence of equilibria, for any given  the LHS of (13) is greater than the RHS

starting at  = 0, so either there is an  ∈ (0 1) that solves (13) or  = 1. Similarly for any
given  the RHS of (14) is greater than or equal to the LHS starting at  = 0, so either there is

a  ∈ (0 1) that solves (13) or  = 1. Considering the corresponding implicit functions ()
and (), from (13) and (14),




= −




− 







− 



− 



 0 (15)




= −




− 







− 




+ 


 0 (16)

where the inequalities follows since     0 and     0 from

(9) and (10), since   , and since  and  are increasing functions. Hence the solutions

are unique and the implicit functions exist and are continuous on [0 1) and, by the continuous

extension theorem, on [0 1] . Therefore they intersect at least once in [0 1]2 by the Brouwer fixed

point theorem, so an equilibrium with lying by both types exists.

Multiple such equilibria may exist, but we can still use the equilibrium requirement  

0  = 0  = 0   0 to compare equilibrium behavior with the case of transparent incentives.

For an unbiased expert there is no lying when incentives are transparent, so there is more lying

with opaque incentives. For a biased expert there is an incentive to lie in favor of  when incentives

are transparent, so the question is whether lying is higher with opaque incentives. From (13),

the incentive to lie toward  is increasing in  and decreasing in . The latter must be lower

with opaque incentives since there is no lying in favor of  when incentives are transparent, so

 must be smaller with opaque incentives if the lying rate is smaller. But from (9) and (3) this

requires (2− )  (2−  + )  1 (1 + ) or  +   2 where  is the lying rate with

transparent incentives. This in turn requires   , so lying by biased experts must still be

higher with opaque incentives.

Regarding acceptance probabilities, compared to when the expert is known to be unbiased,

the increases in lying in both directions imply  and  both decrease. Compared to when the

expert is known to be biased,  falls due to lying toward  by unbiased types, but the impact

on  is ambiguous since biased types lie more toward  but with some chance the expert is

unbiased and never lies toward . ¥
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7 Appendix B — Instructions and Procedures

Subjects are led into the computer room and told to sit in front of any of 20 terminals. Instructions

are provided on the terminals for the consultants and clients as the experiment progresses, and

summaries are read aloud to ensure that information is common knowledge. A screenshot of the

main introductory screen is in Appendix C and a summary is read aloud after subjects are seated.

After all subjects have clicked through the introductory instructions on their own terminals

they see a screen which assigns them their roles for the rest of the experiment and provides

instructions for the first Symmetric Baseline treatment (or “first series” as described to subjects).

Screenshots of these instructions for both the consultant and client are included in Appendix C.

The following summary is read aloud.

First Series [Symmetric Baseline Treatment]: The consultant has two projects

- Project A and Project B. One is a good project worth $10 to the client and the other

is a bad project worth $0 to the client. Each round the computer randomly assigns one

project to be good and tells the consultant. The client does not know which project

is good and which is bad.

The client has his/her own project - Project C. Each round Project C is randomly

assigned by the computer to be worth any value between $0.00 and $10.00. Any such

value is equally likely. The computer tells the client how much Project C is worth,

but the consultant does not know.

The consultant will give a recommendation to the client via the computer. The rec-

ommendation will be “I recommend Project A” or “I recommend Project B”.

After getting the recommendation, the client will make a decision. The client earns

the value of the project that is chosen. If the client chooses Project A or Project B

the consultant will earn $8 in that round. However, if the client chooses his/her own

Project C instead, the consultant will earn $0. One round from this series will be

randomly chosen at the end as the round you are actually paid for.

After subjects click through the instructions on their screen, in each round consultants see the

values of  and  and make their recommendations, and clients see the recommendations and the

values of  and make their choices. Screenshots for these recommendations and choices are also

included in Appendix C. The realized values and choices are then revealed to each consultant-

client pair at the end of each round. Subjects only see the realized values and choices for their own

pairing in that round. After the 10 rounds are completed subjects see a summary of their actions

and payoffs in each round. They then see a screen with instructions for the next Asymmetric

Incentives treatment (“second series”) and the following summary is read aloud.
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Second Series [Asymmetric Incentives Treatment]: Everything is the same as

the first series, except if the client chooses Project A the consultant will earn $10 and

if the client chooses Project B the consultant will earn $5.

After the Asymmetric Incentives treatment is completed in the same manner as the Sym-

metric Baseline treatment, the Opaque Incentives treatment (“third series”) begins. This is the

most complicated treatment but its description is facilitated by its being a mix of the first two

treatments. Each consultant is assigned the incentives of the first or the second treatment with

equal chance. The assignment is block random and is for the duration of the treatment. The

consultants know their incentives, but the clients do not know whether the consultant in any given

round is biased or not. The following summary of the treatment is read aloud while subjects see

a screen with the detailed description.

Third Series [Opaque Incentives Treatment]: Everything is the same as before,

except the Computer will randomly assign the consultant’s payoff scheme. Half of the

consultants will earn $8 if either Project A or B is chosen, and half of consultants will

earn $10 if project A is chosen but only $5 if project B is chosen. The consultant

knows his/her payoff scheme but the client does not know which payoff scheme the

Computer assigned the consultant.

After the Opaque Incentives treatment is completed, the Asymmetric Values treatment (“fourth

series”) begins. The following summary of the treatment is read aloud while subjects see a screen

with the detailed description.

Fourth Series [Asymmetric Values Treatment]: Everything is the same as the

first series, including the consultant’s payoff scheme of earning $8 if either Project A

or B is chosen, except the value of Project B to the client if it is good is only $5 instead

of $10. If project A is good its value to the client is still $10. A bad project is still

worth $0 to the client.

After the Asymmetric Values treatment is completed, subjects see a screen summarizing their

actions and payoffs across all 40 rounds. On this screen they are also told what rounds have been

randomly chosen as the rounds they will be paid for. They enter into the computer a number 1-20

that has been randomly placed next to the terminal and they are called out in sequence by this

number to be paid by the experimenter. They do not see the payments for any other subjects,

they sign for their payment next to their number without a printed name, and the record of their

signature is preserved separately by the university’s bookkeeping department. Other than the

signature, no personally identifying records are maintained.
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8 Appendix C — Sample Screenshots

Main introductory screen:

Consultant instructions for Symmetric Baseline treatment:
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Consultant decision screen for Symmetric Baseline treatment:

Client instructions for Symmetric Baseline treatment:
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Client decision screen for Symmetric Baseline treatment:

Client payoff screen for Symmetric Baseline treatment:
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